1. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000;289:739-745.

2. Trabanino RJ, Hall SE, Vaidehi N, Floriano WB, Kam VWT, Goddard WA 3rd. First principles predictions of the structure and function of G-protein-coupled receptors: validation for bovine rhodopsin. Biophys J 2004;86:1904-1921.

3. Wallin E, von Heijne G. Properties of N-terminal tails in G-protein coupled receptors: a statistical study. Protein Eng 1995;8:693-698.

4. Popot JL, Engelman DM. Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 2000;69:881-922.

5. Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ. Chimeric a2-,p2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 1988;240:1310-1316.

6. Ridge KD, Lee SSJ, Yao LL. In vivo assembly of rhodopsin from expressed polypeptide fragments. Proc Natl Acad Sci USA 1995;92:3204-3208.

7. Schoneberg T, Liu J, Wess J. Plasma membrane localization and functional rescue of truncated forms of a G protein-coupled receptor. J Biol Chem 1995;270:18,000-18,006.

8. Karnik SS, Gogonea C, Patil S, Saad Y, Takezako T. Activation of G-pro-tein-coupled receptors: a common molecular mechanism. Trends Endocrinol Metab 2003;14:431-437.

9. Kurtenbach E, Curtis CA, Pedder EK, Aitken A, Harris ACM, Hulme EC. Muscarinic acetylcholine receptors. Peptide sequencing identifies residues involved in antagonist binding and disulfide bond formation. J Biol Chem 1990;265:13,702-13,708.

10. Karnik SS, Khorana HG. Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. J Biol Chem 1990;265:17,520-17,524.

11. Hwa J, Klein-Seetharaman J, Khorana HG. Structure and function in rhodopsin: mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants. Proc Natl Acad Sci USA 2001;98:4872-4876.

12. Boyd ND, Kage R, Dumas JJ, Krause JE, Leeman SE. The peptide binding site of the substance P (NK-1) receptor localized by a photoreactive analogue of substance P: presence of a disulfide bond. Proc Natl Acad Sci USA 1996;93:433-437.

Rios CD, Jordan BA, Gomes I, Devi LA. G-protein-coupled receptor dimer-ization: modulation of receptor function. Pharmacol Ther 2001;92:71-87. Angers S, Salahpour A, Bouvier M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 2002;42:409-435.

George SR, O'Dowd BF, Lee SP. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 2002;1:808-820. Milligan G, Ramsay D, Pascal G, Carrillo JJ. GPCR dimerisation. Life Sci 2003;74:181-188.

Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 2000;21:90-113. Gether U, Ballesteros JA, Seifert R, Sanders-Bush E, Weinstein H, Kobilka BK. Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J Biol Chem 1997;272:2587-2590.

Alewijnse AE, Timmerman H, Jacobs EH, et al. The effect of mutations in the DRY motif on the constitutive activity and structural instability of the histamine H2 receptor. Mol Pharmacol 2000;57:890-898. Wilson MH, Highfield HA, Limbird LE. The role of a conserved inter-trans-membrane domain interface in regulating a2a-adrenergic receptor conformational stability and cell-surface turnover. Mol Pharmacol 2001;59:929-938. Sung CH, Schneider BG, Agarwal N, Papermaster DS, Nathans J. Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA 1991;88:8840-8844. Bai M, Quinn S, Trivedi S, et al. Expression and characterization of inactivating and activating mutations in the human Ca2+osensing receptor. J Biol Chem 1996;271:19,537-19,545.

Tanaka H, Moroi K, Iwai J, et al. Novel mutations of the endothelin B receptor gene in patients with Hirschsprung's disease and their characterization. J Biol Chem 1998;273:11,378-11,383.

d'Addio M, Pizzigoni A, Bassi MT, et al. Defective intracellular transport and processing of OA1 is a major cause of ocular albinism type 1. Hum Mol Genet 2000;9:3011-3018.

Themmen APN, Huhtaniemi IT. Mutations of gonadotropins and gonadotro-pin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev 2000;21:551-583.

Morello JP, Bichet DG. Nephrogenic diabetes insipidus. Annu Rev Physiol 2001;63:607-630.

Wonerow P, Neumann S, Gudermann T, Paschke R. Thyrotropin receptor mutations as a tool to understand thyrotropin receptor action. J Mol Med 2001;79:707-721.

Leanos-Miranda A, Janovick JA, Conn PM. Receptor-misrouting: an unexpectedly prevalent and rescuable etiology in GnRHR-mediated hypogonadotropic hypogonadism. J Clin Endocrinol Metab 2002;87:4825-4828.

29. Lubrano-Berthelier C, Durand E, Dubern B, et al. Intracellular retention is a common characteristic of childhood obesity-associated MC4R mutations. Hum Mol Genet 2003;12:145-153.

30. Spiegel AM, Weinstein LS. Inherited diseases involving G proteins and G protein-coupled receptors. Annu Rev Med 2004;55:27-39.

31. Aridor M, Hannan LA. Traffic jam: a compendium of human diseases that affect intracellular transport processes. Traffic 2000;1:836-851.

32. Aridor M, Hannan LA. Traffic jams II: an update of diseases of intracellular transport. Traffic 2002;3:781-790.

33. Petäjä-Repo UE, Hogue M, Laperriere A, Walker P, Bouvier M. Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human 8 opioid receptor. J Biol Chem 2000;275:13,727-13,736.

34. Petäjä-Repo UE, Hogue M, Laperriere A, Bhalla S, Walker P, Bouvier M. Newly synthesized human 8 opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome. J Biol Chem 2001;276:4416-4423.

35. Hipkin RW, Sanchez-Yagüe J, Ascoli M. Identification and characterization of a luteinizing hormone/chorionic gonadotropin (LH/CG) receptor precursor in a human kidney cell line stably transfected with the rat luteal LH/CG receptor complementary DNA. Mol Endocrinol 1992;6:2210-2218.

36. Vannier B, Loosfelt H, Meduri G, Pichon C, Milgrom E. Anti-human FSH receptor monoclonal antibodies: immunochemical and immunocytochemical characterization of the receptor. Biochemistry 1996;35:1358-1366.

37. Beau I, Misrahi M, Gross B, et al. Basolateral localization and transcytosis of gonadotropin and thyrotropin receptors expressed in Madin-Darby canine kidney cells. J Biol Chem 1997;272:5241-5248.

38. VuHai-LuuThi MT, Misrahi M, Houllier A, Jolivet A, Milgrom E. Variant forms of the pig lutropin/choriogonadotropin receptor. Biochemistry 1992;31:8377-8383.

39. Apaja PM, Harju KT, Aatsinki JT, Petäjä-Repo UE, Rajaniemi HJ. Identification and structural characterization of the neuronal luteinizing hormone receptor associated with sensory systems. J Biol Chem 2004;279:1899-1906.

40. Fishburn CS, Elazar Z, Fuchs S. Differential glycosylation and intracellular trafficking for the long and short isoforms of the D2 dopamine receptor. J Biol Chem 1995;270:29,819-29,824.

41. Kopito RR. Biosynthesis and degradation of CFTR. Physiol Rev 1999;79:S167-S173.

42. Lomasney JW, Lorenz W, Allen LF, et al. Expansion of the a2-adrenergic receptor family: cloning and characterization of a human a2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci USA 1990;87:5094-5098.

43. Parodi AJ. Protein glucosylation and its role in protein folding. Annu Rev Biochem 2000;69:69-93.

44. Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science 2001;291:2364-2369.

45. Sadeghi H, Birnbaumer M. O-Glycosylation of the V2 vasopressin receptor. Glycobiology 1999;9:731-737.

46. Nakagawa M, Miyamoto T, Kusakabe R, et al. O-Glycosylation of G-pro-tein-coupled receptor, octopus rhodopsin. Direct analysis by FAB mass spec-trometry. FEBS Lett 2001;496:19-24.

47. Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 2003;97:1-33.

48. Rands E, Candelore MR, Cheung AH, Hill WS, Strader CD, Dixon RA. Mutational analysis of P-adrenergic receptor glycosylation. J Biol Chem 1990;265:10,759-10,764.

49. Kaushal S, Ridge KD, Khorana HG. Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci USA 1994;91:4024-4028.

50. Couvineau A, Fabre C, Gaudin P, Maoret JJ, Laburthe M. Mutagenesis of N-glycosylation sites in the human vasoactive intestinal peptide 1 receptor. Evidence that asparagine 58 or 69 is crucial for correct delivery of the receptor to plasma membrane. Biochemistry 1996;35:1745-1752.

51. Lanctot PM, Leclerc PC, Escher E, Leduc R, Guillemette G. Role of N-glycosylation in the expression and functional properties of human AT1 receptor. Biochemistry 1999;38:8621-8627.

52. Boer U, Neuschafer-Rube F, Moller U, Puschel GP. Requirement of N-glycosylation of the prostaglandin E2 receptor EP3b for correct sorting to the plasma membrane but not for correct folding. Biochem J 2000;350:839-847.

53. Zhu H, Wang H, Ascoli M. The lutropin/choriogonadotropin receptor is palmitoylated at intracellular cysteine residues. Mol Endocrinol 1995;9:141-150.

54. Tanaka K, Nagayama Y, Nishihara E, Namba H, Yamashita S, Niwa M. Palmitoylation of human thyrotropin receptor: slower intracellular trafficking of the palmitoylation-defective mutant. Endocrinology 1998;139:803-806.

55. Blanpain C, Wittamer V, Vanderwinden JM, et al. Palmitoylation of CCR5 is critical for receptor trafficking and efficient activation of intracellular signaling pathways. J Biol Chem 2001;276:23,795-23,804.

56. Percherancier Y, Planchenault T, Valenzuela-Fernandez A, Virelizier JL, Arenzana-Seisdedos F, Bachelerie F. Palmitoylation-dependent control of degradation, life span, and membrane expression of the CCR5 receptor. J Biol Chem 2001;276:31,936-31,944.

57. Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science 1999;286:1882-1888.

58. Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 2003;4:181-191.

59. Trombetta ES, Parodi AJ. Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol 2003;19:649-676.

60. Rozell TG, Davis DP, Chai Y, Segaloff DL. Association of gonadotropin receptor precursors with the protein folding chaperone calnexin. Endocrinology 1998;139:1588-1593.

61. Morello JP, Salahpour A, Petäjä-Repo UE, et al. Association of calnexin with wild type and mutant AVPR2 that causes nephrogenic diabetes insipidus. Biochemistry 2001;40:6766-6775.

62. Siffroi-Fernandez S, Giraud A, Lanet J, Franc JL. Association of the thy-rotropin receptor with calnexin, calreticulin and BiP. Effects on the maturation of the receptor. Eur J Biochem 2002;269:4930-4937.

63. Lu M, Echeverri F, Moyer BD. Endoplasmic reticulum retention, degradation, and aggregation of olfactory G-protein coupled receptors. Traffic 2003;4:416-433.

64. Meacham GC, Lu Z, King S, Sorscher E, Tousson A, Cyr DM. The Hdj-2/ Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J 1999;18:1492-1505.

65. Chapple JP, Cheetham ME. The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation. J Biol Chem 2003;278:19,087-19,094.

66. Tan CM, Brady AE, Nickols HH, Wang Q, Limbird LE. Membrane trafficking of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 2004;44:559-609.

67. Bermak JC, Li M, Bullock C, Zhou QY. Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol 2001;3:492-498.

68. Colley NJ, Baker EK, Stamnes MA, Zuker CS. The cyclophilin homolog ninaA is required in the secretory pathway. Cell 1991;67:255-263.

69. Ferreira PA, Nakayama TA, Pak WL, Travis GH. Cyclophilin-related protein RanBP2 acts as chaperone for red/green opsin. Nature 1996;383:637-640.

70. Dwyer ND, Troemel ER, Sengupta P, Bargmann CI. Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell 1998;93:455-466.

71. Loconto J, Papes F, Chang E, et al. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 2003;112:607-618.

72. McLatchie LM, Fraser NJ, Main MJ, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998;393:333-339.

73. Fraser NJ, Wise A, Brown J, McLatchie LM, Main MJ, Foord SM. The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol Pharmacol 1999;55:1054-1059.

74. Morfis M, Christopoulos A, Sexton PM. RAMPs: 5 years on, where to now? Trends Pharmacol Sci 2003;24:596-601.

75. White JH, Wise A, Main MJ, et al. Heterodimerization is required for the formation of a functional GABAb receptor. Nature 1998;396:679-682.

76. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJP, Zuker CS. Mammalian sweet taste receptors. Cell 2001;106:381-390.

77. Nelson G, Chandrashekar J, Hoon MA, et al. An amino-acid taste receptor. Nature 2002;416:199-202.

78. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 2002;99:4692-4696.

79. Kopito RR. ER quality control: the cytoplasmic connection. Cell 1997;88:427-430.

80. Bonifacino JS, Weissman AM. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol 1998;14:19-57.

81. Jarosch E, Lenk U, Sommer T. Endoplasmic reticulum-associated protein degradation. Int Rev Cytol 2003;223:39-81.

82. Yang M, Omura S, Bonifacino JS, Weissman AM. Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination, and proteasome-dependent removal from ER membranes. J Exp Med 1998;187:835-846.

83. Liu Y, Choudhury P, Cabral CM, Sifers RN. Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J Biol Chem 1999;274:5861-5867.

84. Hosokawa N, Wada I, Hasegawa K, et al. A novel ER a-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2001;2:415-422.

85. Molinari M, Calanca V, Galli C, Lucca P, Paganetti P. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 2003;299:1397-1400.

86. Oda Y, Hosokawa N, Wada I, Nagata K. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 2003;299:1394-1397.

87. Illing ME, Rajan RS, Bence NF, Kopito RR. A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem 2002;277:34,150-34,160.

88. Saliba RS, Munro PMG, Luthert PJ, Cheetham ME. The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 2002;115:2907-2918.

89. Andersson H, D'Antona AM, Kendall DA, Von Heijne G, Chin CN. Membrane assembly of the cannabinoid receptor 1: impact of a long N-terminal tail. Mol Pharmacol 2003;64:570-577.

90. Cook LB, Zhu CC, Hinkle PM. Thyrotropin-releasing hormone receptor processing: role of ubiquitination and proteasomal degradation. Mol Endocrinol 2003;17:1777-1791.

91. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000;404:770-774.

92. Gekko K, Timasheff SN. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry 1981;20:4667-4676.

93. Sawano H, Koumoto Y, Ohta K, Sasaki Y, Segawa S, Tachibana H. Efficient in vitro folding of the three-disulfide derivatives of hen lysozyme in the presence of glycerol. FEBS Lett 1992;303:11-14.

94. Brown CR, Hong-Brown LQ, Biwersi J, Verkman AS, Welch WJ. Chemical chaperones correct the mutant phenotype of the AF508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1996;1:117-125.

95. Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 1996;271:635-638.

96. Tamarappoo BK, Verkman AS. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest 1998; 101:2257-2267.

97. Burrows JAJ, Willis LK, Perlmutter DH. Chemical chaperones mediate increased secretion of mutant a1- antitrypsin (a1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in a1-AT deficiency. Proc Natl Acad Sci USA 2000;97:1796-1801.

98. Perlmutter DH. Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking. Pediatr Res 2002;52:832-836.

99. Bolen DW, Baskakov IV. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 2001;310:955-963.

100. Loo TW, Clarke DM. Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators. J Biol Chem 1997;272:709-712.

101. Fan JQ, Ishii S, Asano N, Suzuki Y. Accelerated transport and maturation of lysosomal a-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 1999;5:112-115.

102. Asano N, Ishii S, Kizu H, et al. In vitro inhibition and intracellular enhancement of lysosomal a-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur J Biochem 2000;267:4179-4186.

103. Matsuda J, Suzuki O, Oshima A, et al. Chemical chaperone therapy for brain pathology in GM1-gangliosidosis. Proc Natl Acad Sci USA 2003;100:15,912-15,917.

104. Sawkar AR, Cheng WC, Beutler E, Wong CH, Balch WE, Kelly JW. Chemical chaperones increase the cellular activity of N370S ß-glucosidase: a therapeutic strategy for Gaucher disease. Proc Natl Acad Sci USA 2002;99:15,428-15,433.

105. Zhou Z, Gong Q, January CT. Correction of defective protein trafficking of a mutant HERG potassium channel in human long QT syndrome. Pharmacological and temperature effects. J Biol Chem 1999;274:31,123-31,126.

106. Ficker E, Obejero-Paz CA, Zhao S, Brown AM. The binding site for channel blockers that rescue misprocessed human long QT syndrome type 2 ether-a-gogo-related gene (HERG) mutations. J Biol Chem 2002;277:4989-4998.

Paulussen A, Raes A, Matthijs G, Snyders DJ, Cohen N, Aerssens J. A novel mutation (T65P) in the PAS domain of the human potassium channel HERG results in the long QT syndrome by trafficking deficiency. J Biol Chem 2002;277:48,610-48,616.

Rajamani S, Anderson CL, Anson BD, January CT. Pharmacological rescue of human K+ channel long-QT2 mutations: human ether-a-go-go-related gene rescue without block. Circulation 2002;105:2830-2835. Yan F, Lin CW, Weisiger E, Cartier EA, Taschenberger G, Shyng SL. Sulfonylureas correct trafficking defects of ATP-sensitive potassium channels caused by mutations in the sulfonylurea receptor. J Biol Chem 2004;279:11,096-11,105.

Halaban R, Cheng E, Svedine S, Aron R, Hebert DN. Proper folding and endoplasmic reticulum to Golgi transport of tyrosinase are induced by its substrates, DOPA and tyrosine. J Biol Chem 2001;276:11,933-11,938. Wiens GD, O'Hare T, Rittenberg MB. Recovering antibody secretion using a hapten ligand as a chemical chaperone. J Biol Chem 2001;276:40,933-40,939. Friedler A, Hansson LO, Veprintsev DB, et al. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci USA 2002;99:937-942.

Issaeva N, Friedler A, Bozko P, Wiman KG, Fersht AR, Selivanova G. Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. Proc Natl Acad Sci USA 2003;100:13,303-13,307. Morello JP, Salahpour A, Laperriere A, et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 2000;105:887-895.

Tan CM, Nickols HH, Limbird LE. Appropriate polarization following pharmacological rescue of V2 vasopressin receptors encoded by X-linked nephrogenic diabetes insipidus alleles involves a conformation of the receptor that also attains mature glycosylation. J Biol Chem 2003;278:35,678-35,686. Petaja-Repo UE, Hogue M, Bhalla S, Laperriere A, Morello JP, Bouvier M. Ligands act as pharmacological chaperones and increase the efficiency of 5 opioid receptor maturation. EMBO J 2002;21:1628-1637. Chaipatikul V, Erickson-Herbrandson LJ, Loh HH, Law PY. Rescuing the traffic-deficient mutants of rat ^-opioid receptors with hydrophobic ligands. Mol Pharmacol 2003;64:32-41.

Janovick JA, Maya-Nunez G, Conn PM. Rescue of hypogonadotropic hypogonadism-causing and manufactured GnRH receptor mutants by a specific protein-folding template: misrouted proteins as a novel disease etiology and therapeutic target. J Clin Endocrinol Metab 2002;87:3255-3262. Janovick JA, Goulet M, Bush E, Greer J, Wettlaufer DG, Conn PM. Structure-activity relations of successful pharmacologic chaperones for rescue of naturally occurring and manufactured mutants of the gonadotropin-releasing hormone receptor. J Pharmacol Exp Ther 2003;305:608-614. Li T, Sandberg MA, Pawlyk BS, et al. Effect of vitamin A supplementation on rhodopsin mutants threonine-17 — methionine and proline-347 — serine in transgenic mice and in cell cultures. Proc Natl Acad Sci USA 1998;95:11,933-11,938.

121. Noorwez SM, Kuksa V, Imanishi Y, et al. Pharmacological chaperone-medi-ated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. J Biol Chem 2003;278:14,442-14,450.

122. Noorwez SM, Malhotra R, McDowell JH, Smith KA, Krebs MP, Kaushal S. Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H. J Biol Chem 2004;279:16,278-16,284.

123. Morello JP, Petäjä-Repo UE, Bichet DG, Bouvier M. Pharmacological chaper-ones: a new twist on receptor folding. Trends Pharmacol Sci 2000;21:466-469.

124. Conn PM, Leanos-Miranda A, Janovick JA. Protein origami: therapeutic rescue of misfolded gene products. Mol Intervent 2002;2:308-316.

125. Kahn TW, Sturtevant JM, Engelman DM. Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin. Biochemistry 1992;31:8829-8839.

126. Villaverde J, Cladera J, Padros E, Rigaud JL, Dunach M. Effect of nucle-otides on the thermal stability and on the deuteration kinetics of the thermo-philic F0Fj ATP synthase. Eur J Biochem 1997;244:441-448.

127. Celej MS, Montich GG, Fidelio GD. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci 2003;12:1496-1506.

128. Desnick RJ, Schuchman EH. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat Rev Genet 2002;3:954-966.

129. Fan JQ. A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity. Trends Pharmacol Sci 2003;24:355-360.

130. Leanos-Miranda A, Ulloa-Aguirre A, Ji TH, Janovick JA, Conn PM. Dominant-negative action of disease-causing gonadotropin-releasing hormone receptor (GnRHR) mutants: a trait that potentially coevolved with decreased plasma membrane expression of GnRHR in humans. J Clin Endocrinol Metab 2003;88:3360-3367.

Diabetes 2

Diabetes 2

Diabetes is a disease that affects the way your body uses food. Normally, your body converts sugars, starches and other foods into a form of sugar called glucose. Your body uses glucose for fuel. The cells receive the glucose through the bloodstream. They then use insulin a hormone made by the pancreas to absorb the glucose, convert it into energy, and either use it or store it for later use. Learn more...

Get My Free Ebook

Post a comment