References

1. (i) W. Noddack, I. Tacke, O. Berg, Naturwissenschaften 13, 567 (1925). (ii) I. Tacke, The discovery of eka-manganeses, Angew. Chem. 38, 1157-1160 (1925).

2. (i) C. Perrier, E. Segre, Some chemical properties of element 43, J. Chem. Phys. 5, 712-716 (1937). (ii) C. Perrier, E. Segre, Radioactive isotopes of element 43, Nature 140, 193-194 (1937). (iii) E. Segre, Radioactive isotopes of element 43, Nuovo Cemento 14, 528 (1937).

3. C. Perrier, E. Segre;, Technetium: The element of atomic number 43, Nature 159, 24 (1947).

4. P.W. Merrill, Technetium in the N-type star, 19 Piscium Publs. Astron. Soc. Pacific 68, 70-71 (1956).

5. B.T. Kenna, P.K. Kuroda, Isolation of naturally occurring technetium, J. Inorg. Nucl. Chem. 23, 142-144 (1961).

6. E. Segre, G.T. Seaborg, Nuclear isomerism in element 43, Phys. Rev. 54, 772 (1938).

7. P. Richards, A survey of the production of Brookhaven National Laboratory of radioisotopes for medical research, Trans. 5th Nuclear Congress, 7th Int. Electronic Nuclear Symposium (Rome), 223 244 (1960).

8. J. Varma, C.E. Mandeville, The disintegration of 99Mo, Phys. Rev. 94, 91-94 (1954).

9. P.V. Harper, R. Beck, D. Charleston, K.A. Lathrop, Optimalization of a scanning method using 99mTc, Nucleonics 22, 50-54 (1964).

10. The CRC Handbook of Chemistry and Physics, 64th Edition, Robert C. Weast (ed.) CRC Press, Cleveland, Ohio, USA, 1984.

11. W.C. Eckelman, P. Richards, Instant 99mTc-DTPA, J. Nucl. Med. 11, 761-762 (1970).

12. J.R. Dilworth, S.J. Parrott, The biomedical chemistry of technetium and rhenium, Chem. Soc. Rev. 27, 43-55 (1998).

13. K. Schwochau, Technetium radiopharmaceuticals - fundamentals, synthesis, structure and development, Angew. Chem. Int. Ed. 33, 2258-2267 (1994).

14. J.P. Leonard, D.P. Novotnik, R.D. Nierinckx, Technetium-99m-d, 1-HM-PAO: A new radiopharmaceutical for imaging regional brain perfusion using SPECT

a comparison with iodine-123 HIPDM, J. Nucl. Med. 27, 1819-1823 (1986).

15. S. Jurisson, E.O. Schlemper, D.E. Troutner etal., Synthesis, characterization, and X-ray structural determinations of technetium(V)-oxo-tetradentate amine oxime complexes, Inorg. Chem. 25, 543-549 (1986).

16. R.C. Walovitch, T.C. Hill, S.T. Garrity etal., Characterization of technetium-99m-L, L-ECD for brain perfusion imaging, Part 1: Pharmacology of technetium-99m ECD in nonhuman primates, J. Nucl. Med. 30, 1892-1901 (1989).

17. A.R. Fritzberg, S. Kasina, S.D. Eshima, D.L. Johnson, Synthesis and biological evaluation of technetium-99m MAG3 as a hippuran replacement, J. Nucl. Med. 27, 111-116 (1986).

18. K. Itoh, 99mTc-MAG3: Review of pharmacokinetics, clinical application to renal diseases and quantification of renal function, Ann. Nucl. Med. 15, 179-190 (2001).

19. J.D. Kelly, A.M. Forster, B. Higley etal., Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging, J. Nucl. Med. 34, 222 227 (1993).

20. K.E. Linder, M.F. Malley, J.Z. Gougoutas etal, Neutral, seven-coordinate dioxime complexes of technetium(III): Synthesis and characterization, Inorg. Chem. 29, 2428-2434 (1990).

21. B.L. Holman, A.G. Jones, J. Lister-James etal., A new technetium-99m-labeled myocardial imaging agent, hexakis(t-butylisonitrile)-technetium(I) [Tc-99m TBI]: Initial experience in the human, J. Nucl. Med. 25, 1350-1355 (1984).

22. E. Prats, F. Aisa, M.D. Abos et al., Mammography and 99mTc-MIBI scintimammo-graphy in suspected breast cancer, J. Nucl. Med. 40, 296-301 (1999).

23. M.J. Abrams, A. Davison, A.G. Jones etal., Synthesis and characterization of hexakis(alkyl isocyanide) and hexakis(aryl isocyanide) complexes of technetium(I), Inorg. Chem. 22, 2798-2800 (1983).

24. L.M. Lamki, Bone scintigraphy current trends and future prospects, J. Nucl. Med. 26, 312-314 (1985).

25. K. Libson, E. Deutsch, B.L. Barnett, Structural characterization of a technetium-99-diphosphonate complex. Implications for the chemistry of technetium-99m skeletal imaging agents, J. Am. Chem. Soc. 102, 2476-2478 (1980).

26. J.L. Martin Jr, J. Yuan, C.E. Lunte etal., Technetium-diphosphonate skeletal imaging agents: EXAFS structural studies in aqueous solution, Inorg. Chem. 28, 2899-2901 (1989).

27. R. Alberto, Technetium, Compr. Coord. Chem. II5, 127-270 (2004).

28. P. Thornton, Manganese, technetium and rhenium, Annual Reports on the Progress of Chemistry, Section A: Inorganic Chemistry 99, 191 200 (2003).

29. P.J. Blower, Inorganic pharmaceuticals, Annual Reports on the Progress of Chemistry, Section A: Inorganic Chemistry 97, 587-603 (2001).

30. B.I. Kharisov, M.A. Mendez-Rojas, State-of-the-art coordination chemistry of radioactive elements, Russ. Chem. Rev. 70, 865-884 (2001).

31. B. Johannsen, H. Spies, Technetium(V) chemistry as relevant to nuclear medicine, Top. Curr. Chem. 176, 77-121 (1996).

32. L.M. Gustavson, T.N. Rao, D.S. Jones etal., Synthesis of a new class of technetium chelating agents: N2S2 monoaminemonoamide (MAMA) ligands, Tetrahedron. Lett. 32, 5485-5488 (1991).

33. J.P. O'Neill, S.R. Wilson, J.A. Katzenellenbogen, Preparation and structural characterization of monoamine-monoamide bis(thiol) oxo complexes of technetium(V) and rhenium(V), Inorg. Chem. 33, 319-323 (1994).

34. D. Brenner, A. Davison, J. Lister-James, A.G. Jones, Synthesis and characterization of a series of isomeric oxotechnetium(V) diamido dithiolates, Inorg. Chem. 23, 3793-3797 (1984).

35. H.F. Kung, M. Molnar, J. Billings etal., Synthesis and biodistribution of neutral lipid-soluble technetium-99m complexes that cross the blood brain barrier, J. Nucl. Med. 25, 326-332 (1984).

36. R.A. Bell, B.E. McCarry, J.F. Valliant, The synthesis, NMR spectroscopy, and X-ray structure of a new rhenium N2S2 chelate complex, Inorg. Chem. 37, 3517-3520 (1998).

37. J.E. Cyr, D.P. Nowotnik, Y. Pan etal., Technetium(V) oxo complexes of substituted propylene diamine dioxime (PnAO) ligands: Water-dependent interconversion between syn and anti isomers, Inorg. Chem. 40, 3555-3561 (2001).

38. E. Wong, T. Fauconnier, S. Bennett et al., Rhenium(V) and technetium(V) oxo complexes of an N2N'S peptidic chelator: Evidence of interconversion between the syn and anti conformations, Inorg. Chem. 36, 5799 5808 (1997).

39. S.S. Jurisson, J.D. Lyden, Potential technetium small molecule radiopharmaceuticals, Chem. Rev. 99, 2205-2218 (1999).

40. H.F. Kung, Development of Tc-99m labeled tropanes: TRODAT-1, as a dopamine transporter imaging agent, Nucl. Med. Biol. 28, 505-508 (2001).

41. P.D. Mozley, J.S. Schneider, P.D. Acton etal, Binding of [99mTc]TRODAT-1 to dopamine transporters in patients with Parkinson's disease and in healthy volunteers, J. Nucl. Med. 41, 584-589 (2000).

42. D.A. Schwarz, M.J. Abrams, M.M. Hansen etal., Preparation of hydrazino-modified proteins and their use of the synthesis of technetium-99m-protein conjugates, Bioconjug. Chem. 2, 333-336 (1991).

43. T. Nicholsen, J. Zubieta, Complexes of rhenium with benzoylazo and related ligands. Crystal and molecular structures of the 'green chelate' benzoylazo complex [ReCl2(PPh3)2(NNCOC6H4-p-Cl)](N2, O), of the analogous 1-azophthalazine chelate complex [ReCl2(PPh3)2(NNC8H5N2)][N2N!] and of the cis-dichloro organodia-zenido complexes of the type [ReCl2(PPh3)2(NNR)L](L2NCCH3, NH3, and C5H5N). A comparison to the structure of the trans-dichloro dimethylformamid derivative [ReCl2(PPh3)2(NNCO2CH3)(Me2NCHO)]. The structural characterization of the mixed hydrazido(1-) hydrazideo(2-) complexes [ReCl2(PPh3)2(NNHR) (NHNHR1)], (R = R1 = -COC6H5; R = -COC6H5R, R1 = -CO2CH3), Polyhedron 7, 171-185 (1988).

44. S. Liu, D.S. Edwards, A.R. Harris, A novel ternary ligand system for 99mTc-labeling of hydrazino nicotinamide-modified biologically active molecules using imine-N-containing heterocycles as coligands, Bioconjug. Chem. 9, 583-595 (1998).

45. D.S. Edwards, S. Liu, J.A. Barrett etal., New and versatile ternary ligand system for technetium radiopharmaceuticals: Water soluble phosphines and tricine as coligands in labeling a hydrazinonicotinamide-modified cyclic glycoprotein IIb/IIIa receptor antagonist with 99mTc, Bioconjug. Chem. 8, 146-154 (1997).

46. M. Ono, Y. Arano, T. Mukai etal., Control of radioactivity pharmacokinetics of 99mTc-HYNIC-labeled polypeptides derivatized with ternary ligand complexes, Bioconjug. Chem. 13, 491-501 (2002).

47. M.J. Abrams, J. Juweid, C.I. ten Kate etal., Technetium-99m-labeled hydrazino nicotinamide derivatized chemotactic peptide analogs for imaging focal sites of bacterial infection, J. Nucl. Med. 34, 1964-1974 (1993).

48. J.W. Babich, W. Graham, S.A. Barrow, A. Fischman, Comparison of the infection imaging properties of a 99mTc labeled chemotactic peptide with 111In IgG, Nucl. Med. Biol. 22, 643-648 (1995).

49. C. Decristoforo, W. Cholewimski, E. Donnemiller etal., Detection of somatostatin receptor-positive tumours using the new 99mTc-tricine-HYNIC-D-Phe1-Tyr3-octreo-tide: First results in patients and comparison with 111In-DTPA-D-Phe1-octreotide, Eur. J. Nucl. Med. 27, 1580-1580 (2000).

50. S. Liu, A.R. Harris, N.E. Williams, D.S. Edwards, 99mTc-Labeling of a hydrazino-nicotinamide-conjugated LTB4 receptor antagonist useful for imaging infection and inflammation, Bioconjug. Chem. 13, 881-886 (2002).

51. S. Liu, D.S. Edwards, M.C. Ziegler etal., 99mTc-Labeling of a hydrazinonicotina-mide-conjugated vitronectin receptor antagonist useful for imaging tumors, Biocon-jug. Chem. 12, 624-629 (2001).

52. E.T. Dams, W.J. Oyen, O.C. Boerman et al., Technetium-99m labeled to human immunoglobulin G through the nicotinyl hydrazine derivative: A clinical study, J. Nucl. Med. 39, 119-124 (1998).

53. J.W. Babich, W. Graham Coco, S. Barrow etal., 99mTc-labeled chemotactic pep-tides: Influence of coligand on distribution of molecular species and infection imaging properties. Synthesis and structural characterization of model complexes with the (Re(^2-HNNC5H4N)(^2-NNC5H4N)} core, Inorg. Chim. Acta 309, 123-136 (2000).

54. R. Alberto, R. Schlibi, A. Egli, P.A. Schubiger, Novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]~ in aqueous solution and its reaction with a bifunctional ligand, J. Am. Chem. Soc. 120, 7987-7988 (1998).

55. R. Alberto, K. Ortner, N. Wheatley et al., Synthesis and properties of boranocar-bonate: A convenient in situ CO source for the aqueous preparation of [Tc(H2O)3(CO)3]+, J. Am. Chem. Soc. 123, 3135-3136 (2001).

56. R. Alberto, R. Schibli, R. Waibel etal., Basic aqueous chemistry of [M(OH2)3(CO)3]+ (M = Re, Tc) directed towards radiopharmaceutical application, Coord. Chem. Rev. 190-192, 901-919 (1999).

57. R. Waibei, R. Alberto, J. Willude et al., Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex, Nat. Biotechnol. 17, 897-901 (1999).

58. A. Egli, R. Alberto, L. Tannahill et al., Organometallic 99mTc-aquaion labels pep-tide to an unprecedented high specific activity, J. Nucl. Med. 40, 1913 1917 (1999).

59. S.R. Banerjee, M.K. Levadala, N. Lazarova etal., Bifunctional single amino acid chelates for labeling of biomolecules with the (Tc(CO)3}+ and (Re(CO)3}+ cores. Crystal and molecular structures of [ReBr(CO)3(H2NCH2C5H4N)], [Re(CO)3 ((C5 H4NCH2)2NH}]Br, [Re(CO)3((C5H4NCH2)2NCH2CO2H}]Br, [Re(CO)3(X(Y) NCH2CO2CH2CH3}]Br (X = Y = 2-pyridylmethyl; X = 2-pyridylmethyl, Y = 2-(1-methylimidazolyl)methyl; X = Y = 2-(1-methylimidazolyl)methyl), [ReBr(CO)3 ((C5H4NCH2)NH(CH2C4H3S)}], and [Re(CO)3((C5H4NCH2)N(CH2C4H3S) (CH2 CO2)}], Inorg. Chem. 41, 6417-6425 (2002).

60. J.K. Pak, P. Benny, B. Spingler etal., Ne functionalization of metal and organic protected L-histidine for a highly efficient, direct labeling of biomolecules with [Tc(OH2)3(CO)3]+, Chem. Eur. J. 9, 2053-2061 (2003).

61. R. Schibli, R. La Bella, R. Alberto etal., Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)-tricarbonyl complexes: A hint for the future functionalization of biomolecules, Bioconjug. Chem. 11, 345 351 (2000).

62. D. Kwekkeboom, E.P. Krenning, M. de Jong, Peptide receptor imaging and therapy, J. Nucl. Med. 41, 1704-1713 (2000).

63. S. Liu, D.S. Edwards, 99mTc-Labeled small peptides as diagnostic radiopharmaceut-icals, Chem. Rev. 99, 2235-2268 (1999).

64. C. Van de Wiele, A. Signore, R.A. Dierckx, Peptide receptor imaging: Advances in the diagnosis of pulmonary diseases, Am. J. Resp. Med. 1, 177-183 (2002).

65. J. Blum, H. Handmaker, N.A. Rinne, Technetium labeled small peptide radiopharmaceuticals in the identification of lung cancer, Curr. Pharm. Des. 8, 1827-1836 (2002).

66. S.M. Okarvi, Recent developments in 99mTc-labelled peptide-based radiopharmaceuticals: An overview, Nucl. Med. Commun. 20, 1093-1112 (1999).

67. L.C. Francesconi, Y. Zheng, J. Bartis etal., Preparation and characterization of [99TcO] Apcitide: A technetium labeled peptide, Inorg. Chem. 43, 2867-2875 (2004).

68. F. Le Bideau, M. Salmain, S. Top, G. Jaouen, New and efficient routes to biomo-lecules substituted with cyclopentadienyltricarbonylrhenium and -technetium derivatives, Chem. Eur. J. 7, 2289-2294 (2001).

69. N. Metzler-Nolte, Labeling of biomolecules for medicinal applications-bioorgano-metallic chemistry at its best, Angew. Chem. Int. Ed. 40, 1040-1043 (2001).

70. G. Jaouen, S. Top, A. Vessieres, R. Alberto, New paradigms for synthetic pathways inspired by bioorganometallic chemistry, J. Organomet. Chem. 600, 23-36 (2000).

71. M. Wenzel, Technetium-99m labeling of cymantrene analogs with various substituents. A new preparation of technetium-99m radiodiagnostics, J. Labelled Compd. Radiopharm. 31, 641-650 (1992).

72. T.W. Spradau, J.A. Katzenellenbogen, Preparation of cyclopentadienyltricarbo-nylrhenium complexes using a double ligand-transfer reaction, Organometallics 17, 2009-2017 (1998).

73. T.W. Spradau, W.B. Edwards, C.J. Anderson etal., Synthesis and biological evaluation of Tc-99m-cyclopentadienyltricarbonyltechnetium-labeled octreotide, Nucl. Med. Biol. 26, 1 7 (1999).

74. J. Wald, R. Alberto, K. Ortner, L. Candreia, Aqueous one-pot synthesis of derivatized cyclopentadienyl-tricarbonyl complexes of 99mTc with an in situ CO source: Application to a serotonergic receptor ligand, Angew. Chem. Int. Ed. 40, 3062-3066 (2001).

75. J. Bernard, K. Ortner, B. Spingler etal., Aqueous synthesis of derivatized cyclopen-tadienyl complexes of technetium and rhenium directed toward radiopharmaceuti-cal application, Inorg. Chem. 42, 1014-1022 (2003).

76. J.F. Valliant, P. Morel, P. Schaffer, J.H. Kaldis, Carboranes as ligands for the preparation of organometallic Tc and Re radiopharmaceuticals. Synthesis of [M(CO)3(^5-2,3-C2B9Hu)r and rac-[M(CO)3(^5-2-R-2,3-C2B9H10)r (M = Re, 99Tc; R = CH2CH2CO2H) from [M(CO)3Br3]2~, Inorg. Chem. 41, 628-630 (2002).

77. O.O. Sogbein, P. Merdy, P. Morel, J.F. Valliant, Preparation of Re(I)- and 99mTc(I)-metallocarboranes in water under weakly basic reaction conditions, Inorg. Chem. 43, 3032 3034 (2004).

78. J.B. Arterburn, K.V. Rao, M.C. Perry, Solid-supported hydrazine substrate for labeling estradiol ligands with rhenium, Angew. Chem. Int. Ed. 39, 771-772 (2000).

79. R. Dunn-Dufault, A. Pollak, J. Fitzgerald etal., A solid-phase technique for preparation of no-carrier-added technetium-99m radiopharmaceuticals: Application to the streptavidin/biotin system, Nucl. Med. Biol. 27, 803-807 (2000).

80. J.A. Bravo, A. Gibson, K. Loughran, M. Bradley, Solid-phase synthesis of oxo (mercaptoacetylglycylglycylglycine)rhenate(V), Chem. Commun. 9, 837-838 (2001).

81. R. Dunn-Dufault, A. Pollak, J.R. Thornback, J.R. Ballinger, Convenient preparation of no-carrier-added technetium-99m radiopharmaceuticals using solid-phase technology, Bioconjug. Chem. 10, 832-837 (1999).

82. A. Pollak, D.G. Roe, C.M. Pollock etal., A convenient method of preparing high specific activity technetium complexes using thiol-containing chelators adsorbed on gold, J. Am. Chem. Soc. 121, 11593-11594 (1999).

83. S. Mundwiler, L. Candreia, P. Haefliger etal., Preparation of no-carrier-added technetium-99m complexes via metal-assisted cleavage from a solid phase, Biocon-jug. Chem. 15, 195-202 (2004).

84. A.J. Fischman, J.W. Babich, H.W. Strauss, A ticket to ride: Peptide radiopharmaceuticals, J. Nucl. Med. 34, 2253-2263 (1993).

85. J.F. Valliant, R.W. Riddoch, D.W. Hughes etal., The solid-phase synthesis and NMR spectroscopy of a 99Tc chelate-bombesin derived peptide conjugate, Inorg. Chim. Acta 325, 155-163 (2001).

86. C.J. Smith, H. Gali, G.L. Sieckman etal., Radiochemical investigations of 99mTc-N3S-X-BBN[7-14]NH2; An in vitro/in vivo structure-activity relationship study where X = 0, 3, 5, 8, and 11-carbon tethering moieties, Bioconjug. Chem. 14, 93-102 (2003).

87. J. Gariepy, S.Remy, X. Zhang etal., A simple two-step approach for introducing a protected diaminedithiol chelator during solid-phase assembly of peptides, Biocon-jug. Chem. 13, 679-684 (2002).

88. W.E.P. Greenland, K. Howland, J. Hardy etal., Solid-phase synthesis of peptide radiopharmaceuticals using Fmoc-N-e-(HYNIC-Boc)-lysine, a technetium-binding amino acid: Application to Tc-99m-labeled salmon calcitonin, J. Med. Chem. 46, 1751-1757 (2003).

89. D.H. Hunter, L.G. Luyt, Lysine conjugates for the labelling of peptides with technetium-99m and rhenium, J. Labelled Compd. Radiopharm. 43, 403-412 (2000).

90. K.A. Stephenson, J. Zubieta, S.R. Banerjee etal., A new strategy for the preparation of peptide-targeted radiopharmaceuticals based on an fmoc-lysine-derived single amino acid chelate (SAAC). Automated solid-phase synthesis, NMR characterization, and in vitro screening of fMLF(SAAC)G and fMLF[(SAAC-Re(CO)3)+]G, Bioconjug. Chem. 15, 128-136 (2004).

91. S.M. Qaim, Production of high purity 94mTc for positron emission tomography studies, Nucl. Med. Biol. 27, 323-328 (2000).

92. M.F. Smith, M.E. Daube-Witherspoon, P.S. Plascjak etal., Device-dependent activity estimation and decay correction of radionuclide mixtures with application to Tc-94m PET studies, Med. Phys. 28, 36-45 (2001).

93. C.K. Stone, B.T. Christian, R.J. Nickles, S.B. Perlman, Technetium 94m-labeled methoxyisobutyl isonitrile: Dosimetry and resting cardiac imaging with positron emission tomography, J. Nucl. Cardiol. 1, 425-433 (1994).

94. J.R. Nickles, A.D. Nunn, C.K. Stone, B.T. Christian, Technetium-94m-teboroxime: synthesis, dosimetry and initial PET imaging studies, J. Nucl. Med. 34, 1058-1066 (1993).

95. L.G. Luyt, H. Bigott, M.J. Welch, J.A. Katzenellenbogen, 7a- and 17a-Substituted estrogens containing tridentate tricarbonyl rhenium/technetium complexes: synthesis of estrogen receptor imaging agents and evaluation using microPET with technetium-94m, Bioorg. Med. Chem. 11, 4977-4989 (2003).

96. M.J. Welch, J.S. Lewis, [Tc(CO)3]+ Chemistry: A promising new concept for SPECT? Eur. J. Nucl. Med. 30, 1302-1304 (2003).

97. S.R. Cherry, In Vivo molecular and genomics imaging: New challenges for imaging physics, Phys. Med. Biol. 49, R13-R48 (2004).

98. M.E. Phelps, Positron emission tomography provides molecular imaging of biological processes, Proc. Natl. Acad. Sci. USA 97, 9226-9233 (2000).

99. D.J. Rowland, J.S. Lewis, M.J. Welch, Molecular imaging: The application of small animal positron emission tomography, J. Cell. Biochem. (Suppl. 39), 110-115 (2002).

100. A. Wirrwar, N. Schramm, H. Vosberg, H.W. Muller-Gartner, High resolution SPECT in small animal research, Rev. Neurosci. 12, 187-193 (2001).

101. F.G. Blankenberg, H.W. Strauss, Nuclear medicine applications in molecular imaging, J. Magn. Reson. Imaging 16, 352-361 (2002).

102. M.S. Berridge, D.L. Heald, Z. Lee, Imaging studies of biodistribution and kinetics in drug development, Drug Dev. Res. 59, 208-226 (2003).

103. S.J. Gatley, N.D. Volkow, J.S. Fowler etal., Positron emission tomography and its use to image the occupancy of drug binding sites, Drug Dev. Res. 59, 194-207 (2003).

Was this article helpful?

0 0
The Smoker's Sanctuary

The Smoker's Sanctuary

Save Your Lungs And Never Have To Spend A Single Cent Of Ciggies Ever Again. According to a recent report from the U.S. government. Centers for Disease Control and Prevention, more than twenty percent of male and female adults in the U.S. smoke cigarettes, while more than eighty percent of them light up a cigarette daily.

Get My Free Ebook


Post a comment