Info

37. Kato, T., Nishina, M., Matsushita, K., Hori, E., Mito, T., and Takashima, S., 1997, Neuronal maturation and N-acetyl-L-aspartic acid development in human fetal and child brains, Brain Dev. 19, 131-133.

38. Frahm, J., Bruhn, H., Gyngell, M.L., Merboldt, K.-D., Hanicke, W., and Sauter, R., 1989, Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites, Magn. Reson. Med. 11, 47-63.

39. Kreis, R., Ernst, T., and Ross, B.D., 1993, Absolute quantitation of water and metabolites in the human brain. Part II: Metabolite concentrations, J. Magn. Reson. 102, 9-19.

40. Matalon, R., Rady, P.L., Platt, K.A., Skinner, H.B., Quast, M.J., Campbell, G.A., Matalon, K., Ceci, J.D.,

Tyring, S.K., Nehls, M., Surendran, S., Wei, J., Ezell, E.L., and Szucs, S., 2000, Knock-out mouse for canavn disease: a model for gene transfer to the central nervous system, J. Gene Med. 2, 165-175.

41. Slusher, B.S., Robinson, M.B., Tsai, G., Simmons, M.L., Richards, S.S., and Coyle, J.T. ,1990, Rat brain

N-acetylated a linke acidic dipeptidase activity: purification and immunologic characterization, J. Biol.Chem. 265, 21297-21301.

42. Tyson, R.L., and Sutherland, G.R., 1998, Labeling of N-acetylaspartate and N-acetylaspartylglutamate in rat neocortex, hippocampus and cerebellum from [1-13C]glucose, Neurosci. Lett. 251, 181-184.

43. Burlina, A.P., Corazza, A., Ferrari, V., Erhard, P., Kunnecke, B., Seelig, J., and Burlina, A.B., 1994,

Detection of increased urinary N-acetylaspartylglutamate in Canavan disease, Eur. J. Pediatr. 153, 538539.

44. Krawczyk, H., and Gradowska, W., 2003, Characterization of the 1H and 13C NMR spectra of N-

acetylaspartylglutamate and its detection in urine from patients with Canavan disease, J. Pharm. Biomed. Anal. 31, 455-463.

45. Surendran, S., Ezell, E., Quast,MJ, Wei, J., Tyring SK., Michals-Matalon, and Matalon, R., 2004c,

Aspartoacylase deficiency does not affect N-acetylaspartylglutamate level or glutamate carboxypeptidase II activity in the knockout mouse brain, Brain Res. 1016, 268-271.

46. Blakeley, R.D., Robinson, M.B., Thompson, R.C., and Coyle, J.T., 1988, Hydrolysis of the brain dipeptide

N-acetyl-L-aspartyl-glutamate: subcellular and regional distribution, ontogeny and the effect of lesions on N-acetylated alpha-linked acidic dipeptidase activity, J. Neurochem. 50, 1200-1209.

Stauch, B.L., Robinson, M.B., Forloni, G., Tsai, G., and Coyle, J.T., 1989, The effects of N-acetylated alpha-linked acidic dipeptidase (NAALADase) inhibitors on [3H]NAAG catabolism in vivo, Neurosci. Lett. 100, 295-300.

Dehnes, Y., Chaudhry, F.A., Ullensvang, K., Lehre, K.P., Storm-Mathisen, J., and Danbolt, N.C., 1998, The glutamate transporter EAAT4 in rat cerebellar purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia, J. Neurosci. 18, 3606-3619.

Furuta, A., Rothstein, J.D., and Martin, L.J., 1997, Glutamate transporter protein subtypes are expressed differentially during rat CNS development, J. Neurosci. 17, 8363-8375.

Surendran, S., Rady, P.L., Matalon, K., Quast, M.J., Rassin, D.K., Campbell, G.A.,Ezell, E.L., Wei, J., Tyring, S.K., Szucs, S., and Matalon, R., 2003b, Expression ofglutamate transporter, GABRA6, serine priteinase inhibitor 2 and low levels of glutamate and GABA in the brain of knock-out mouse for Canavan disease, Brain Res. Bull. 61, 427-435.

Petroff, O.A., Hyder, F., Mattson, R.H., and Rothman, D.L., 1999, Topiramate increases brain GABA, homocarnosin and pyrolidone in patients with epilepsy, Neurology 52, 473-478.

Gibson, KM., Hoffman GF., Hodson, AK., Bottiglieri, T., Jacobs, C., 1988, 4-Hydroxybutyric acid and the clinical phenotype of succinic semialdehyde dehydrogenase deficiency, an inborn error of GABA metabolism, J. Inherit. Metab. Dis. 16, 704-715.

Surendran, S., Ezell, EL., Quast, MJ., Wei, J., Tyring, SK., Michals-Matalon, K. and Matalon, R (2004d) Mental retardation and hypotonia seen in the knockout mouse for Canavan disease is not due to succinate semialdehyde deficiency, Neurosci. Lett. 358, 29-32.

Kang, S.J., Sanchez, I., Jing, N., Yuan, J., 2003, Dossociation between neurodegeneration and caspase-11-mediated activation of caspase-1 and caspase-3 in a mouse model for amyotrophic lateral sclerosis, J. Neurosci. 23, 5455-5460.

Hisahara, S., Yuan, J., Momoi, T., Okano, H., and Miura, M., 2001, Caspase-11 mediates oligodendrocyte cell death and pathogenesis of autoimmune mediated demyelination, J.Exp.Med. 193, 111-122.

Harrison, D.C., Davis, R.P., Bond, B.C., Campbell, C.A., Jmes, M.F., Parsons, A.A., and Philpott, K.L., 2001, Caspase mRNA expression in a rat model of focal cerebral ischemia, Brain Res. Mol. Brain Res. 89, 133-146.

Thiemmara, V., Pays, L., Danty, E., Jourdan, F., Moyse, E., and Mehlen, P., 2002, Serine protease inhibitor 2 Spi2 mediated apoptosis of olfactory neurons, Cell Death Differ. 9, 1343-1351.

Dinarello, C.A., 1998, Interlekin-1 receptors and interleukin-1 receptor antagonist. Int. Rev. Immunol. 16, 457-499.

Dandoy-Dron, F., Benboudjema, L., Guillo, A., Jaegly, A., Jasmin, C., Dormont, D., Tovey, M.G., and Dron, M., 2000, Enhanced levels of scrapie responsive gene mRNA in BSE-infected mouse brain, Brain Res. Mol. Brain Res. 76, 173-179.

Surendran, S., Tyring, S.K., Michals-Matalon, K and Matalon, R., 2004a, Therapeutic options in prevention and treatment of aspartoacylase gene mutation resulting abnormalities in Canavan disease, Current pharmacogenomics 2, 13-20.

Rothwell, N.J., and Luheshi, G.N., 2000, Interleukin 1 in the brain: biology, pathology, and therapeutic target, Trends Neurosci. 23, 618-625.

Matalon, R., Surendran, S., Rady, P., Quast, J.J., Campbell, G.A., Matalon, K.M., Tyring,S.K., Wei, J., Peden, C.S., Ezell, E.L., Muzyczka, N., and Mandel, R.J., 2003, Adeno-associated virus-mediated Aspartoacylase gene transfer to the brain of knockout mouse for Canavan disease, Eur.J.Pediatr. 153, 538-539.

Snyder, E.Y., Deitcher, D.L., Walsh, C., Arnold-Aldea, S., Hartwieg, E.A., and Cepko, C.L., 1992, Multipotent neural cell lines can engraft and participate in development of mouse cerebellum, Cell 68, 33-51.

Brustle, O., Maskos, U., and McKay, R.D.G.,1995, Host-guided migration allows targeted introduction of neurons into the embryonic brain, Neuron 15, 1275-1285.

Sun, S., Guo, Z., Xiao, X., Liu, B., Liu, X., Tang, P.H., and Mao, N., 2003, Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method, Stem cells 21, 527-535.

Turnpenny, L., Brickwood, S., Spalluto, C.M., Piper, K., Cameron, I.T., Wilson, D.I.,and Hanley, N.A., 2003, Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells, Stem Cells 21, 598-609.

Rosario, C.M., Yandava, B.D., Kosaras, B., Zurakowski, R., Sidman, L., and Snyder, E.Y., 1997, Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action, Development 124, 4213-4224.

68. Snyder, E.Y., Yoon, C., Flax, J.K., and Macklis, J.D., 1997, Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex, Proc. Natl. Acad. Sci. USA 94, 11663-11668.

69. Brundin, L., Brismar, H., Danilov, A.I., Olsson, O., and Johansson, C.B., 2003, Neural stem cells: a potential source for remyelination in neuroinflammatory disease, Brain Pathol. 13, 322-328.

70. Na, R., McCarthy, M., Neyt, C., Lai, E., and Fishell, G., 1998, Telencephalic progenitors maintain anteroposterior identities cell autonomously, Curr. Biol. 8, 987-990

71. Surendran, S., Shihabuddin, L.S., Clarke, J., Taksir, T.V, Stewart, G.R., Parsons, G., Yang, W.,

Tyring SK., Michals-Matalon K., and Matalon, R., 2004b, Mouse neural progenitor cells differentiate into oligodendrocytes in the brain of a knockout mouse model of Canavan Disease, Dev. Brain Res. 2004 Oct 15:153(1):19-27.

0 0

Post a comment