Spinal cord mechanisms

The sensory input from primary sensory neurons is transferred, via their central axons, to second-order neurons in the dorsal horn of the spinal cord. The synaptic contacts made between afferent central terminals and dorsal horn neurons are highly organized, both topographically and functionally to maintain accurate transfer of information regarding the peripheral noxious stimuli. Following peripheral nerve lesions, synaptic processing in the spinal cord can be subject to diverse forms of functional, chemical, and structural plasticity that are highly involved in the production of hypersen-sitivity to sensory input. Increased synaptic efficacy (the phenomenon of central sensitization), loss of inhibitory mechanisms, alterations in synaptic contacts, and the activation of nonneuronal cells all play major roles in producing increased pain sensitivity in neuropathic pain. This chapter will address each of these areas in turn.

Figure 1.6 The immune system in neuropathic pain. Overview of the effect of the immune system on primary sensory neurons and the spinal cord after peripheral nerve injury. (a) Representation of a mixed nerve injury in which injured and uninjured axons are juxtaposed. The site of injury is typified by the recruitment and proliferation of nonneuronal elements (such as Schwann cells, mast cells, and macrophages), which release factors including the cytokines TNFa, IL-18, IL-6, the chemokine CCL2, prostaglandins (PGs) and growth factors, including nerve growth factor (NGF) that initiate and maintain sensory abnormalities after injury. These factors might either induce activity in the axons they act on or be transported retrogradely to cell bodies in the dorsal root ganglion (DRG), where they alter the gene expression of neurons. (b) The effect of the immune system in the spinal cord following peripheral nerve injury with a focus on microglial activation. A primary afferent neuron terminal is flanked by microglial cells that maintain and survey the environment in the spinal cord. In neuropathic pain states, the microglia are activated, probably by the release of transmitters or modulators from primary afferents. The activated microglia release several proinflammatory cytokines, chemokines, and other agents that modulate pain processing by affecting either presynaptic release of neurotransmitters and/or postsynaptic excitability. The release of inflammatory mediators (such as tumor necrosis factor-a (TNFa), interleukin-1 b (IL-1 b), interleukin-6 (IL-6), nitric oxide (NO), ATP, and prostaglandins (PGs) initiates a self-propagating mechanism of enhanced cytokine expression by microglial cells. This leads to an increase in intracellular calcium, and activation of the p38 and MAPK/ERK pathway. AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; CCR2, CCL2 receptor; CX3CR1, fractalkine receptor; EAA, excitatory amino acids; ERK, extracellular signal-regulated kinase; FPRL1, formyl peptide receptor-like 1; MHC, major histocompatibility complex; NGF, nerve growth factor; NK1R, neurokinin-1 receptor; NMDA, N-methyl-D-aspartic acid; P2 x 4, P2 x 7, ionotropic purinoceptors; p38MAPK, p38 mitogen-activated protein kinase. Adapted with permission from Macmillan Publishers Ltd: Nature Reviews Neuroscience86 © 2005 and reprinted from Trends in Neuroscience, 28, Tsuda M, Inoue K, Salter MW, Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia, 101-7, © 2005, with permission from Elsevier.89

Peripheral Neuropathy Natural Treatment Options

Peripheral Neuropathy Natural Treatment Options

This guide will help millions of people understand this condition so that they can take control of their lives and make informed decisions. The ebook covers information on a vast number of different types of neuropathy. In addition, it will be a useful resource for their families, caregivers, and health care providers.

Get My Free Ebook


Post a comment