1. Bates TR, Gibaldi M, Kanig JL. Solubilizing properties of bile salt solutions. II. Effect of inorganic electrolyte, lipids, and a mixed bile salt system on solubilization of glutethimide, griseofulvin, and hexestrol. J Pharm Sci 1966; 55(2):901-906.

2. Bates TR, Lin SL, Gibaldi M. Solubilization and rate of dissolution of drugs in the presence of physiologic concentrations of lysolecithin. J Pharm Sci 1967; 56(11):1492-1495.

3. Martis L, Hall NA, Thakkar AL. Micelle formation and testosterone solubilization by sodium glycocholate. J Pharm Sci 1972; 61(11):1757-1761.

4. Rosoff M, Serajuddin ATM. Solubilization of diazepam in bile-salts and in sodium cholate-lecithin-water phases. Int J Pharm 1980; 6(2):137-146.

5. Kassem MA, Mattha AG, Elnimr AEM, Omar SM. Study of the influence of sodium taurocholate (Stc) and sodium glycocholate (Sgc) on the mass-transfer of certain drugs—digoxin. Int J Pharm 1982; 12(1):1-9.

6. Serajuddin AT, Sheen PC, Mufson D, Bernstein DF, Augustine MA. Physicochemical basis of increased bioavailability of a poorly water-soluble drug following oral administration as organic solutions. J Pharm Sci 1988; 77(4):325-329.

7. Mithani SD, Bakatselou V, TenHoor CN, Dressman JB. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res 1996; 13(1):163-167.

8. Wiedmann TS, Liang W, Kamel L. Solubilization of drugs by physiological mixtures of bile salts. Pharm Res 2002; 19(8):1203-1208.

9. Wiedmann TS, Kamel L. Examination of the solubilization of drugs by bile salt micelles. J Pharm Sci 2002; 91(8):1743-1764.

10. Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res 1998; 15(1):11-22.

11. Porter CJ, Charman WN. In vitro assessment of oral lipid based formulations. Adv Drug Deliv Rev 2001; 50(suppl 1):S127-S147.

12. Kostewicz ES, Brauns U, Becker R, Dressman JB. Forecasting the oral absorption behavior of poorly soluble weak bases using solubility and dissolution studies in biorelevant media. Pharm Res 2002; 19(3):345-349.

13. Dressman JB, Reppas C. In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur J Pharm Sci 2000; 11(suppl 2):S73-S80.

14. Sunesen VH, Pedersen BL, Kristensen HG, Mullertz A. In vivo in vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media. Eur J Pharm Sci 2005; 24(4):305-313.

15. Vertzoni M, Dressman J, Butler J, Hempenstall J, Reppas C. Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur J Pharm Biopharm 2005; 60(3):413-417.

16. de Smidt PC, Campanero MA, Troconiz IF. Intestinal absorption of penclomedine from lipid vehicles in the conscious rat: contribution of emulsification versus digestibility. Int J Pharm 2004; 270(1-2):109-118.

17. Kossena GA, Charman WN, Boyd BJ, Dunstan DE, Porter CJ. Probing drug solu-bilization patterns in the gastrointestinal tract after administration of lipid-based delivery systems: A phase diagram approach. J Pharm Sci 2004; 93(2):332-348.

18. Carriere F, Barrowman JA, Verger R, Laugier R. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 1993; 105(3):876-888.

19. Lowe ME. The triglyceride lipases of the pancreas. J Lipid Res 2002; 43(12):2007-2016.

20. Patton JS, Carey MC. Inhibition of human pancreatic lipase-colipase activity by mixed bile salt-phospholipid micelles. Am J Physiol 1981; 241(4):G328-G336.

21. Larsson A, Erlanson-Albertsson C. The importance of bile salt for the reactivation of pancreatic lipase by colipase. Biochim Biophys Acta 1983; 750(1):171-177.

22. Patton JS, Carey MC. Watching fat digestion. Science 1979; 204(13):145-148.

23. Rigler MW, Honkanen RE, Patton JS. Visualization by freeze fracture, in vitro and in vivo, of the products of fat digestion. J Lipid Res 1986; 27(8):836-857.

24. Hernell O, Staggers JE, Carey MC. Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings. Biochemistry 1990; 29(8):2041-2056.

25. Armand M, Borel P, Pasquier B, et al. Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am J Physiol 1996; 271(1):G172-G183.

26. Tangerman A, van Schaik A, van der Hoek EW. Analysis of conjugated and unconjugated bile acids in serum and jejunal fluid of normal subjects. Clin Chim Acta 1986; 159(2):123-132.

27. Pedersen BL, Brondsted H, Lennernas H, Christensen FN, Mullertz A, Kristensen HG. Dissolution of hydrocortisone in human and simulated intestinal fluids. Pharm Res 2000; 17(7):183-189.

28. Pedersen BL, Mullertz A, Brondsted H, Kristensen HG. A comparison of the solubility of danazol in human and simulated gastrointestinal fluids. Pharm Res 2000; 17(2):891-894.

29. Ladas SD, Isaacs PE, Murphy GM, Sladen GE. Comparison of the effects of medium and long chain triglyceride containing liquid meals on gall bladder and small intestinal function in normal man. Gut 1984; 25(5):405-411.

30. Persson EM, Gustafsson AS, Carlsson AS, et al. The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharm Res 2005; 22(12):2141-2151.

31. Armand M, Borel P, Ythier P, et al. Effects of droplet size, triacylglycerol composition, and calcium on the hydrolysis of complex emulsions by pancreatic lipase: an in vitro study. J Nutr Biochem 1992; 3(7):333-341.

32. MacGregor KJ, Embleton JK, Lacy JE, et al. Influence of lipolysis on drug absorption from the gastro-intestinal tract. Adv Drug Deliv Rev 1997; 25(1):33-46.

33. Ljusberg-Wahren H, Seier NF, Brogard M, Troedsson E, Mullertz A. Enzymatic characterization of lipid-based drug delivery systems. Int J Pharm 2005; 298(2):328-332.

34. Subramanian R, Wasan KM. Effect of lipid excipients on in vitro pancreatic lipase activity. Drug Dev Ind Pharm 2003; 29(8):885-890.

35. Armand M, Pasquier B, Andre M, et al. Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr 1999; 70(6):1096-1106.

36. Dressman JB, Berardi RR, Dermentzoglou LC, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 1990; 7(7):756-761.

37. Gargouri Y, Moreau H, Verger R. Gastric lipases: biochemical and physiological studies. Biochim Biophys Acta 1989; 1006(3):255-271.

38. Shankland W. The ionic behavior of fatty acids solubilized by bile salts. J Coll Int Sci 1970; 34(1):9-25.

39. Zangenberg NH, Mullertz A, Kristensen HG, Hovgaard L. A dynamic in vitro lipolysis model. I. Controlling the rate of lipolysis by continuous addition of calcium. Eur J Pharm Sci 2001; 14(3):115-122.

40. Christensen JO, Schultz K, Mollgaard B, Kristensen HG, Mullertz A. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. Eur J Pharm Sci 2004; 23(3):287-296.

41. Zangenberg NH, Mullertz A, Gjelstrup KH, Hovgaard L. A dynamic in vitro lipolysis model. II: Evaluation of the model. Eur J Pharm Sci 2001; 14(2): 237-244.

42. Patton JS, Andersson L. Immobilized pancreatic lipase and colipase for purification and binding studies. FEBS Lett 1978; 86(2):179-182.

43. Kaukonen AM, Boyd BJ, Porter CJ, Charman WN. Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations. Pharm Res 2004; 21(2):245-253.

44. Reymond JP, Sucker H. In vitro model for cyclosporin intestinal absorption in lipid vehicles. Pharm Res 1988; 5(10):673-676.

45. Kaukonen AM, Boyd BJ, Charman WN, Porter CJ. Drug solubilization behavior during in vitro digestion of suspension formulations of poorly water-soluble drugs in triglyceride lipids. Pharm Res 2004; 21(2):254-260.

46. Porter CJ, Kaukonen AM, Taillardat-Bertschinger A, et al. Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride-based oral lipid formulations of poorly water-soluble drugs: studies with halofantrine. J Pharm Sci 2004; 93(5):1110-1121.

47. Porter CJ, Kaukonen AM, Boyd BJ, Edwards GA, Charman WN. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm Res 2004; 21(8):1405-1412.

48. Kossena GA, Charman WN, Boyd BJ, Porter CJ. Influence of the intermediate digestion phases of common formulation lipids on the absorption of a poorly water-soluble drug. J Pharm Sci 2004; 94(3):481-492.

49. Borel P, Armand M, Ythier P, et al. Hydrolysis of emulsions with different triglycerides and droplet sizes by gastric lipases in vitro. Effect on pancreatic lipase activity. J Nutr Biochem 1994; 5(3):124-133.

50. Sek L, Porter CJ, Charman WN. Characterisation and quantification of medium chain and long chain triglycerides and their in vitro digestion products, by HPTLC coupled with in situ densitometric analysis. J Pharm Biomed Anal 2001; 25(3-4): 651-661.

51. The United States Pharmacopeia/The National Formulary (USP24/NF19) 2000. United states Pharmacopeia Convection, Inc, Rockville, MD, USA, 1254-1255.

52. Alvarez FJ, Stella VJ. The role of calcium ions and bile salts on the pancreatic lipase-catalyzed hydrolysis of triglyceride emulsions stabilized with lecithin. Pharm Res 1989; 6(7):449-457.

53. Borel P, Grolier P, Armand M, et al. Carotenoids in biological emulsions: solubility, surface-to-core distribution, and release from lipid droplets. J Lipid Res 1996; 37(2):250-261.

54. Nielsen FS, Petersen KB, Mullertz A. Bioavailability of Probucol from Lipid and Surfactant Based Formulations in Minipigs: Influence of Particle Size and Dietary State. Submitted for publication.

55. Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and "self-microemulsifying" drug delivery systems. Eur J Pharm Sci 2000; 11(suppl 2):S93-S98.

56. Reymond JP, Sucker H, Vonderscher J. In vivo model for cyclosporin intestinal absorption in lipid vehicles. Pharm Res 1988; 5(10):677-679.

57. Christensen JO, Schultz K, Mollgaard B, Rohde M, Kristensen HG, Mullertz A. Evaluation of an in vitro digestion model for the prediction of in vivo absorption of poorly water-soluble drug in lipid-based formulations. Submitted for publication.

58. Drewe J, Meier R, Vonderscher J, et al. Enhancement of the oral absorption of cyclosporin in man. Br J Clin Pharmacol 1992; 34(1):60-64.

59. Kovarik JM, Mueller EA, van Bree JB, Tetzloff W, Kutz K. Reduced inter- and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharm Sci 1994; 83(3):444-446.

60. Gao ZG, Choi HG, Shin HJ, et al. Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosporin A. Int J Pharm 1998; 161(1):75-86.

61. Odeberg JM, Kaufmann P, Kroon KG, Hoglund P. Lipid drug delivery and rational formulation design for lipophilic drugs with low oral bioavailability, applied to cyclosporine. Eur J Pharm Sci 2003; 20(4-5):375-382.

62. Khoo SM, Humberstone AJ, Porter CJH, Edwards GA, Charman WN. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int J Pharm 1998; 167(1-2):155-164.

63. Holm R, Porter CJ, Edwards GA, Mullertz A, Kristensen HG, Charman WN. Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides. Eur J Pharm Sci 2003; 20(1):91-97.

64. Fatouros DG, Nielsen FS, Mullertz A. In Vitro Dynamic Lipolysis Model: A Tool to Predict the In Vivo behavior of Lipid Based Formulations. Presented at the 2004 AAPS Annual Meeting, Baltimore, MD, USA.

Was this article helpful?

0 0

Post a comment