References

1. Testa, B., and Soine, W. Principles of drug metabolism. In Abraham, D. J. (ed.), Burgers Medicinal Chemistry and Drug Discovery, Vol 2, 6th ed. New York: Wiley, 2003, pp. 431-498.

2. Albert, A. Chemical aspects of selective toxicity, Nature 182:421-423, 1958.

3. Harper, N. J. Drug latentiation. Prog. Drug Res. 4:221-294, 1962.

4. Sinkula, A., and Yalkowsky, S. Rationale for design of biologically reversible drug derivatives: Prodrugs. J. Pharm. Sci. 64:181-210, 1975.

5. Higuchi, T., and Stella, V. Prodrugs as Novel Drug Delivery Systems. Washington: American Chemical Society, 1975.

6. Roche, E. B. Design of Biopharmaceutical Properties Through Prodrugs and Analogs. Washington: American Pharmaceutical Association, 1977.

7. Trefouel, J., Nitti, F., and Bovet, D. Activite dup-aminophenyl sulfamide sur les infections streptococciques. C. R. Seances Soc. Biol. Fil. 120:756-762, 1935.

8. Testa, B., and Caldwell, J. Prodrugs revisited: The "ad hoc" approach as a complement to ligand design. Med. Res. Rev. 16:233-241, 1996.

9. Lexxel package insert (Astra Merck, US), new 12/96, rec. 4/97.

10. Bodor, N., and Buchwald, P. Soft drug design: General principles and recent applications. Med. Res. Rev. 20:58-101, 2000.

11. Bodor, N., and Buchwald, P. Designing safer (soft) drugs by avoiding the formation of toxic and oxidative metabolites. Mol. Biotechnol. 26(2):123-132, 2004.

12. Hirayama, F., and Uekama, K. Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev. 36(1):125-141, 1999.

13. Belcheva, N., Smid, J., Lambov, N., et al. Polymeric sustained release formulations of the bronchial dilator vephylline. J. Control. Release 37(1-2):43-48, 1995.

14. Zenebergh, A., Baurain, R., and Trouet, A. Cellular pharmacology of detorubicin and doxorubicin in L1210 cells. Eur. J. Cancer Clin. Oncol. 20(1):115-121, 1984.

15. Robinson, J. R., and Lee, V. H. L., eds. Controlled Drug Delivery. Fundamentals and Applications, 2d ed. New York: Marcel Dekker, 1987.

16. Stella, V. J., Michelson, T. J., and Pipkin, J. D. Prodrugs: The control of drug delivery via bioreversible chemical modification. In Juliano, R. L. (ed.), Drug Delivery Systems: Characteristics and Biomedical Applications. New York: Oxford University Press, 1980, pp. 110-170.

17. Ranade, V. V., and Hollinger, M. A. Drug Delivery Systems, 2d ed. Boca Raton, FL: CRC Press, 2004, pp. 290-299.

18. Hu, L. Prodrugs: Effective solutions for solubility, permeability and targeting challenges. Idrugs 7(8):736-742, 2004.

19. Hu, L. The prodrug approach to better targeting. Curr. Drug Disc. 4(18): 28-32, 2004.

20. Cundy, K. C., Annamalai, T., Bu, L., et al. XP13512 [(±)-1-([(a-isobutanoyloxyethoxy) carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: II. Improved oral bioavailability, dose proportionality, and colonic absorption compared with gabapentin in rats and monkeys. J. Pharmacol. Exp. Ther. 311:324-333, 2004.

21. van Gelder, J., Deferme, S., Naesens, L., et al. Intestinal absorption enhancement of the ester prodrug tenofovir disoproxil fumarate through modulation of the biochemical barrier by defined ester mixtures. Drug Metab. Dispos. 30(8):924-930, 2002.

22. Notari, R. E. Prodrug design. Pharmacol. Ther. 14:25-53, 1981.

23. Ettmayer, P., Amidon, G. L., Clement, B., and Testa, B. Lessons learned from marketed and investigational prodrugs. J. Med. Chem. 47(10):2393-2403, 2004.

24. Guo, A., Hu, P., Balimane, P. V., et al. Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line. J. Pharmacol. Exp. Ther. 289(1):448-454, 1999.

25. Sinko, P. J., and Balimane, P. V. Carrier-mediated intestinal absorption of valacyclovir, the l-valyl ester prodrug of acyclovir: I. Interactions with peptides, organic anions and organic cations in rats. Biopharm. Drug Dispos. 19(4):209-217, 1998.

26. Kim, I., Chu, X., Kim, S., et al. Identification of a human valacyclovirase: Biphenyl hydrolase-like (BPHL) protein as valacyclovir hydrolase. J. Biol. Chem. 278(28): 25348-25356, 2003.

27. Portoles, A., Terleira, A., Almeida, S., et al. Bioequivalence study of two formulations of enalapril, at a single oral dose of 20 mg (tablets): A randomized, two-way, open-label, crossover study in healthy volunteers. Curr. Ther. Res. 65(1):34-46, 2004.

28. Olkkola, K. T., Brunetto, A. V., and Mattila, M. J. Pharmacokinetics of oxicam nonsteroidal anti-inflammatory agents. Clin. Pharmacokinet. 26(2):107-120, 1994.

29. Bai, A., Meier, G. P., Wang, Y., et al. Prodrug modification increases potassium tri-cyclo[5.2.1.0(2,6)]-decan-8-yl dithiocarbonate (D609) chemical stability and cytotoxicity against U937 leukemia cells. J. Pharmacol. Exp. Ther. 309:1051-1059, 2004.

30. Brighton, T. A. The direct thrombin inhibitor melagatran/ximelagatran. Med. J. Aust. 181(18):432-437, 2004.

31. Dressler, D., and Potter, H. Discovering Enzymes. New York: Scientific American Library, W. H. Freeman, 1991.

32. Bender, M., Kedzy, F. J., and Wedler, F. C. a-Chymotrypsin: Enzyme concentration and kinetics. J. Chem. Educ. 44:84-88, 1967.

33. Kim, B.-Y., Doh, H.-J., Le, T. N., et al. Ketorolac amide prodrugs for transdermal delivery: Stability and in vitro rat skin permeation studies. Int. J. Pharm. 293(1-2): 193-202, 2005.

34. Mahfouz, N. M., Omar, F. A., and Aboul-Fadl, T. Cyclic amide derivatives as potential prodrugs II. N-Hydroxymethylsuccinimide-/isatin esters of some NSAIDs as prodrugs with an improved therapeutic index. Eur. J. Med. Chem. 34(7-8):551-562, 1999.

35. Bartzatt, R., Suat, L., Cirillo, G., et al. Bifunctional constructs of aspirin and ibupro-fen (nonsteroidal anti-inflammatory drugs; NSAIDs) that express antibacterial and alkylation activities. Biotechnol. Appl. Biochem. 37:273-282, 2001.

36. Shanbhag, V. R., Crider, A. M., Gokhale, R., et al. Ester and amide prodrugs of ibuprofen and naproxen: Synthesis, anti-inflammatory activity, and gastrointestinal toxicity. J. Pharm. Sci. 81:149-154, 1992.

37. Fadl, T. A., Hasegawa, T., Youssef, A. F., et al. Synthesis and investigation of N4-substituted cytarabine derivatives as prodrugs. Pharmazie 50:382-387, 1995.

38. Choe, Y. H., Conover, C. D., Wu, D., et al. Anticancer drug delivery systems: N4-Acyl poly(ethyleneglycol) prodrugs of ara-C. J. Control. Release 79(1-3)41-53, 2002.

39. Hadfield, A. F., and Sartorelli, A. C. The pharmacology of prodrugs of 5-flourouracil and 1-P-d-arabinofuranosylcytosine. Adv. Pharmacol. Chemother. 20:21-67, 1984.

40. Wipf, P., and Li, W. Prodrugs of ara-C. Drugs Future 19:49-54, 1994.

41. Noveck, R. J., and Hubbard, R. C. Parecoxib sodium, an injectable COX-2-specific inhibitor, does not affect unfractionated heparin-regulated blood coagulation parameters. J. Clin. Pharmacol. 44:474-480, 2004.

42. Persico, F. J., Pritchard, J. F., Fisher, M. C., et al. Effect of tolmetin glycine amide (McN-4366), a prodrug of tolmetin sodium, on adjuvant arthritis in the rat. Pharmacol. Exp. Ther. 247(3):889-896, 1988.

43. Cogan, P. S., Fowler, C. R., Post, G. C., and Koch, T. H. Doxsaliform: Anovel N-Mannich base prodrug of a doxorubicin formaldehyde conjugate (letter). Drug Des. Discov. 1:247-255, 2004.

44. Ke, T. L., Graff, G., Spellman, J. M., and Yanni, J. M., Nepafenac, a unique non-steroidal prodrug with potential utility in the treatment of trauma-induced ocular inflammation: II. In vitro bioactivation and permeation of external ocular barriers. Inflammation 24(4):371-384, 2000.

45. Bundgaard, H., Larsen, C., and Thorbek, P. Prodrugs as drug delivery systems: XXVI. Preparation and enzymatic hydrolysis of various water-soluble amino acid esters of metronidazole. Int. J. Pharm. 18(1-2):67-77, 1984.

46. Stella, V. J. Acase for prodrugs: Fosphenytoin. Adv. DrugDeliv. Rev. 19(2):311-330, 1996.

47. Kazmierski, W. M., Bevans, P., Furfine, E., et al. Novel prodrug approach to ampre-navir-based HIV-1 protease inhibitors via O ^ N acyloxy migration of P1 moiety. Bioorg. Med. Chem. Lett. 13(15):2523-2526, 2003.

48. Goldschmidt, V., and Marquet, R. Primer unblocking by HIV-1 reverse transcriptase and resistance to nucleoside RT inhibitors (NRTIs). Int. J. Biochem. Cell. Biol. 36(9):1687-1705, 2004.

49. De Clercq, E. HIV-chemotherapy and -prophylaxis: New drugs, leads and approaches. Int. J. Biochem. Cell. Biol. 36(9):1800-1822, 2004.

50. Arvieux, C., and Tribut, O. Amprenavir or fosamprenavir plus ritonavir in HIV infection: Pharmacology, efficacy and tolerability profile. Drugs 65(5):633-659, 2005.

51. Czock, D., Scholle, C., Rasche, F. M., et al. Pharmacokinetics of valganciclovir and ganciclovir in renal impairment. Clin. Pharmacol. Ther. 72(2):142-150, 2002.

52. Levine, D. S., Riff, D. S., Pruitt, R., et al. Arandomized, double-blind, dose-response comparison of balsalazide (6.75 g), balsalazide (2.25 g), and mesalamine (2.4 g) in the treatment of active, mild-to-moderate ulcerative colitis. Am. J. Gastroenterol. 97(6):1398-1407, 2002.

53. Hall, I. H., Schwab, U. E., Ward, E. S., and Ives, T. J. Effects of alatrofloxacin, the parental prodrug of trovafloxacin, on phagocytic, anti-inflammatory and immunomodulation events of human THP-1 monocytes. Biomed. Pharmacother. 57(8):359-365, 2003.

54. Tunek, A., and Svensson, L. A. Bambuterol, a carbamate ester prodrug of terbutaline, as inhibitor of cholinesterases in human blood. Drug Metab. Dispos. 16(5):759-764, 1988.

55. Halpin, R. A., Ulm, E. H., Till, A. E., et al. Biotransformation of lovastatin: V. Species differences in in vivo metabolite profiles of mouse, rat, dog, and human. Drug Metab. Dispos. 21(6):1003-1011, 1993.

56. Amidon, G. L., Pearlman, R. S., and Lessman, G. D. Design of prodrugs through consideration of enzyme-substrate specificities. In Roche, E. B. (ed.), Design of Biopharmaceutical Properties through Prodrugs and Analogs. Washington: American Pharmaceutical Association, Academy of Pharmaceutical Sciences, 1977, pp. 68-97.

57. Beaumont, K., Webster, R., Gardner, I., and Dack, K. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: Challenges to the discovery scientist. Curr. Drug Metab. 4(6):461-485, 2003.

58. Kaplowitz, N. Interaction of azathioprine and glutathione in the liver of the rat. J. Pharmacol. Exp. Ther. 200(3):479-486, 1977.

59. Matsumoto, H., Sohma, Y., Kimura, T., et al. Controlled drug release new water-soluble prodrugs of an HIV protease inhibitor. Bioorg. Med. Chem. Lett. 11(4): 605-609, 2001.

60. Krishnamoorthy, R., and Mitra, A. K. Prodrugs for nasal drug delivery. Adv. Drug Deliv. Rev. 29:135-146, 1998.

61. Kao, H. D., Traboulsi, A., Itoh, S., et al. Enhancement of the systemic and CNS specific delivery of l-dopa by the nasal administration of its water-soluble prodrugs. Pharm. Res. 17:978-984, 2000.

62. Yajima, T., Juni, K., Saneyoshi, M., et al. Direct transport of 2',3'-didehydro-3'-deoxythymidine (D4T) and its ester derivatives to the cerebrospinal fluid via the nasal mucous membrane in rats. Biol. Pharm. Bull. 21:272-277, 1998.

63. Shao, Z., Park, G. B., Krishnamoorthy, R., and Mitra, A. K. The physicochemical properties, plasma enzymatic hydrolysis, and nasal absorption of acyclovir and its 2'-ester prodrugs. Pharm. Res. 11:237-242, 1994.

64. Shao, Z., and Mitra, A. K. Bile salt-fatty acid mixed micelles as nasal absorption promoters: III. Effects on nasal transport and enzymatic degradation of acyclovir pro-drugs. Pharm. Res. 11:243-250, 1994.

65. Yang, C., Gao, H., and Mitra, A. K. Chemical stability, enzymatic hydrolysis, and nasal uptake of amino acid ester prodrugs of acyclovir. J. Pharm. Sci. 90:617-624, 2001.

66. Hussain, A. A., Al-Bayatti, A. A., Dakkuri, A., et al. Testosterone 17|3-N,N-dimethylglycinate hydrochloride: A prodrug with a potential for nasal delivery of testosterone. J. Pharm. Sci. 91(3):785-789, 2002.

67. Jvinena, T., and Jrvinenb, K. Prodrugs for improved ocular drug delivery. Adv. Drug Deliv. Rev. 19:203-224, 1996.

68. Lee, V. H. L., and Robinson, J. R. Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J. Pharm. Sci. 68:673-684, 1979.

69. Maurice, D. M., and Mishima, S. Ocular pharmacokinetics. In Sears, M. C. (ed.), Handbook of Experimental Pharmacology, Vol. 69. Pharmacology of the Eye. Berlin: Springer-Verlag, 1984, pp. 19-116.

70. Burstein, N. L., and Anderson, J. A. Corneal penetration and ocular bioavailability of drugs. J. Ocul. Pharmacol. 1:309, 1985.

71. Sloan, K. B., ed. Prodrugs: Topical and Ocular Delivery (Drugs and the Pharmaceutical Sciences: A Series of Textbooks and Monographs). New York: Marcel Dekker, 1992.

72. Jarvinen, T., and Jarvinen, K. Prodrugs for improved ocular delivery. Adv. Drug Deliv. Rev. 19:203-224, 1996.

73. Shoenwald, R. D., and Ward, R. L. Relationship between steroid permeability across excised rabbit cornea and octanol-water partition coefficients. J. Pharm. Sci. 67:786, 1978.

74. Anderson, J. A. Systemic absorption of topical ocularly applied epinephrine and dip-ivefrin. Arch. Ophthalmol. 98:350-353, 1980.

75. Lee, V. H. L., and Li, V. H. K. Prodrugs for improved ocular drug delivery, Adv. Drug Deliv. Rev. 3:1-38, 1989.

76. Redell, M. A., Yang, D. C., and Lee, V. H. L. The role of esterase activity in the ocular disposition of dipivalyl epinephine in rabbits. Int. J. Pharm. 17:299-312, 1983.

77. Petersen, R. A., Lee, K. J., and Donn, A. Acetylcolinesterase in the rabbit cornea. Arch. Ophthalmol. 73:370-377, 1965.

78. Lee, V. H. L., Chang, S.-C., Oshiro, C. M., and Smith, R. E. Ocular esterase composition in albino and pigmented rabbits: Possible implications in ocular prodrug design and evaluation. Curr. Eye Res. 4:1117-1125, 1985.

79. Stratford, R. E., and Lee, V. H. Aminopeptidase activity in homogenates of various absorptive mucosae in albino rabbit: Implications in peptide delivery. Int. J. Pharm. 30:73-82, 1986.

80. Lee, V. H. Esterase activities in adult rabbit eyes. J. Pharm. Sci. 72:239-244, 1983.

81. Redell, M. A., Yang, D. C., and Lee, V. H. The role of esterase activity in ocular disposition of dipivalyl epinephrine in rabbits. Int. J. Pharm. 17:299-312, 1983.

82. Salminen, L., Krootila, K., Helin, H., and Hakala, T. Cornea1 vascularization and opacification during long-term use of dipivefrin. J. Ocul. Pharmacol. Ther. 11:37-40, 1995.

83. Sugrue, M. F. The pharmacology of antiglaucoma drugs. Pharmacol. Ther. 43:91-138, 1989.

84. Bundgaard, H., Falch, E., Larsen, C., and Mikkelson, T. J. Pilocarpine prodrugs: I. Synthesis, physicochemical properties and kinetics of lactonization of pilocarpic acid esters. J. Pharm. Sci. 75:36-43, 1986.

85. Colla, L., De Clercq, E., Busson, R., and Vanderhaeghe, H. Synthesis and antiviral activity of water-soluble esters of acyclovir [9-[(2-hydroxy-ethoxy)methyl]guanine]. J. Med. Chem. 26:602-604, 1983.

86. Narurkar, M. M., and Mitra, A. K. Prodrugs of S-iodo-2'-deoxyuridine for enhanced ocular transport. Pharm. Res. 6:887-891, 1989.

87. Musson, D., Bidgood, A., and Olejnik, O. In vitro penetration and metabolism studies of prednisolone phosphate, disodium and prednisolone acetate across the cornea of rabbits. Pharm. Res. 6(suppl):S175, 1989.

88. Kohn, A. N., Moss, A. P., Hargett, N. A., et al. Clinical comparison of dipivalyl epi-nephrine and epinephrine in the treatment of glaucoma. Am. J. Ophthalmol. 87:196-201, 1979.

89. Miller-Meeks, M. J., Farrel, T. A., Munden, P. M., et al. Phenylephrine prodrug report of clinical trials. Ophthalmology. 98(2):222-226, 1991.

90. Cherukury, M., Rix, P., Nguyen, T., et al. Penetration of natural prostaglandins and their ester prodrugs and analogs across human ocular tissues in vitro. J. Ocul. Pharmacol. Ther. 14:389-399, 1998.

91. Satoh, T., Teh, B. S., Timme, T. L., et al. Enhanced systemic T-cell activation after in situ gene therapy with radiotherapy in prostate cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 59(2):562-571, 2004.

92. Gerber, N., Mays, D. C., Donn, K. H., et al. Safety, tolerance and pharmacokinetics of intravenous doses of phosphate-3-ester of hydroxymethyl-5,5-diphenylhydantoin, a new prodrug of phenytoin. J. Clin. Pharmacol. 28:1023-1032, 1988.

93. Sorbera, L., Leeson, P. A., Castaner, J., and Castaner, R. M. Valdecoxib and pare-coxib sodium. Drugs Future 26:133-140, 2001.

94. Larsen, S. W., Sidenius, M., Ankersen, M., and Larsen, C. Kinetics of degradation of 4-imidazolidinone prodrug types obtained from reacting prilocaine with formaldehyde and acetaldehyde. Eur. J. Pharm. Sci. 20:233-240, 2003.

95. Hadgraft, J., Guy, R. H., eds. Transdermal Drug Delivery: Developmental Issues and Research Initiatives. New York: Marcel Dekker, 1989, pp. 1-22.

96. Barry, B. W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 14(2):101-114, 2001.

97. Sloan, K. B., ed. Prodrugs: Topical and Ocular Drug Delivery, Drugs and the Pharmaceutical Sciences: A Series of Textbooks and Monographs, Vol. 53, New York: Marcel Dekker, 1992.

98. Namdeo, A., and Jain, N. K. Liquid crystalline pharmacogel-based enhanced transdermal delivery of propranolol hydrochloride. J. Control. Release 82(2-3):223-236, 2002.

99. Hammell, D. C., Hamad, M., Vaddi, H. K., et al. A duplex "gemini" prodrug of naltrexone for transdermal delivery. J. Control. Release 97(2):283-290, 2004.

100. Doh, H. J., Cho, W. J., Yong, C. S., et al. Synthesis and evaluation of ketorolac ester prodrugs for transdermal delivery. J. Pharm. Sci. 92(5):1008-1017, 2003.

101. Roberts, W. J., and Sloan, K. B. Topical delivery of 5-fluorouracil (5-FU) by 3-alkyl-carbonyloxymethyl-5-FU prodrugs. J. Pharm. Sci. 92(5):1028-1036, 2003.

102. Heimbach, T., Oh, D.-M., Li, L. Y., et al. Enzyme-mediated precipitation of parent drugs from their phosphate prodrugs. Int. J. Pharm. 261(1-2):81-92, 2003.

103. He, X., Sugawara, M., Kobayash, M., et al. An in vitro system for prediction of oral absorption of relatively water-soluble drugs and ester prodrugs. Int. J. Pharm. 263(2):35-44, 2003.

104. Christrup, L. L., Christensen, B. C., Friis, J. G., and Jorgensen, A. Improvement of buccal delivery of morphine using the prodrug approach. Int. J. Pharm. 77(2): 157-165, 1997.

105. Weyel, D., Sedlacek, H.-H., Muller, R., and Brusselbach, S. Secreted human P-glu-curonidase: A novel tool for gene directed prodrug therapy. Gene Ther. 7:224-231, 2000.

106. Springer, C. J., and Niculescu-Duvaz, I. Prodrug-activating systems in suicide gene therapy. J. Clin. Invest. 105:1161-1167, 2000.

107. Hamstra, D. A., and Rehemtulla, A. Toward an enzyme/prodrug strategy for cancer gene therapy: Endogenous activation of carboxypeptidase A mutants by PACE/furin family of propeptidases. Hum. Gene Ther. 10:235-248, 1999.

108. Bagshawe, K. D. ADEPT and related concepts. Cell. Biophys. 24-25:83-91, 1994.

109. Bagshawe, K. D. Antibody directed enzymes revive anticancer prodrugs concept. Br. J. Cancer 56:531-532, 1987.

110. Senter, P. D., Saulnier, M. G., Screiber, G. J., et al. Anti-tumor effects of antibody-alkaline phosphatase conjugates in combination with etoposide phosphate. Proc. Natl. Acad. Sci. USA 85:4842-4846, 1988.

111. Bakina, E., and Farquhar, D. Intensely cytotoxic anthracycline prodrugs: Galactosides. Anticancer Drug Des. 14:507-515, 1999.

112. Danks, M. K., and Potter, P. M. Enzyme-prodrug systems: Carboxylesterase/CPT-11. Methods Mol. Med. 90:247-262, 2004.

113. Kan, O., Kingsman, S., and Naylor, S. Cytochrome P450-based cancer gene therapy: Current status. Exp. Opin. Biol. Ther. 2:857-868, 2002.

114. Brown, N. L., and Lemoine, N. R. Clinical trials with GDEPT: Cytosine deaminase and 5-fluorocytosine. Methods Mol. Med. 90:451-458, 2004.

115. Fillat, C., Carrio, M., Cascante, A., and Sangro, B. Suicide gene therapy mediated by the herpes simplex virus thymidine kinase gene/ganciclovir system: Fifteen years of application. Curr. Gene. Ther. 3:13-26, 2003.

116. Bagshawe, K. D. Tumor therapy, patent no. WO9824478 (1998).

117. Mehvar, R. Recent trends in the use of polysaccharides for improved delivery of therapeutic agents: Pharmacokinetic and pharmacodynamic perspectives. Curr. Pharm. Biotechnol. 4:283-302, 2003.

118. Alexander, C. Synthetic polymers in drug delivery. Exp. Opin. Emerg. Drugs 6(2):345-363, 2001.

119. Duncan, R. The dawning era of polymer therapeutics. Nature Rev. Drug Discov. 2:347-360, 2003.

120. Modi, S., Jain, P. J., and Kumar, N. Polymer-drug conjugates: Recent development for anticancer drugs. CRIPS 5:2-8, 2004.

121. Robinson, M. A., Charlton, T. S., Garnier, P., et al. LEAPT: Lectin-directed enzyme-activated prodrug therapy. Proc. Natl. Acad. Sci. USA 101(40):14527-14532, 2004.

122. Pachene, M. J., Belinka, B., and Simon, P. Novel methods for site-directed drug delivery. Drug Deliv. Technol. 3(1):40-45, 2003.

123. Gillies, R. E., and Frechet, M. J. J. Dendrimers and dendritic polymers in drug delivery. Drug Deliv. Technol. 10(1):35-43, 2005.

124. Malik, N., Evagorou, E. G., and Duncan, R. Dendrimer-platinate: A novel approach to cancer chemotherapy. Anticancer Drugs 10:767-776, 1999.

125. D'Emanuele, A., Jevprasesphant, R., Penny, J., and Attwood, D. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J. Control. Release 95(3):447-453, 2004.

126. Erion, M. D., van Poelje, P. D., MacKenna, D. A., et al. Liver-targeted drug delivery using HepDirect prodrugs. J. Pharmacol. Exp. Ther. 312:554-560, 2005.

This page intentionally left blank

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment