Info

Hermann A, Schmitt S, Jeltsch A. The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J Biol Chem 2003; 278(34):31717-31721. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998; 19(3):219-220. Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 1991; 64(6):1123-1134.

Boyes J, Bird A. Repression of genes by DNA methylation depends on CpG density and promoter strength: Evidence for involvement of a methyl-CpG binding protein. EMBO J 1992; 11(1):327-333.

Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 1998; 18(11):6538-6547.

55. Meehan RR, Lewis JD, Bird AP. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res 1992; 20(19): 5085-5092.

56. Cross SH, Meehan RR, Nan X, Bird A. A component of the transcriptional repressor MeCPl shares a motif with DNA methyltransferase and HRX proteins. Nat Genet 1997; 16(3):256-259.

57. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393(6683):386-389.

58. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998; 19(2):187-191.

59. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 1964; 51:786-794.

60. Bestor TH. Gene silencing. Methylation meets acetylation. Nature 1998; 393(6683): 311-312.

61. Bird AP, Wolffe AP. Methylation-induced repression—belts, braces, and chromatin. Cell 1999; 99(5):451-454.

62. Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 1999; 23(1):58-61.

63. Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 2001; 414(6861):277-283.

64. Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000; 406(6796):593-599.

65. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 2001; 292 (5514):110-113.

66. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669):806-811.

67. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 2002; 297(5588):1833-1837.

68. Hannon GJ. RNA interference. Nature 2002; 418(6894):244-251.

69. Paddison PJ, Caudy AA, Hannon GJ. Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci USA 2002; 99(3):1443-1448.

70. Barker D, Schafer M, White R. Restriction sites containing CpG show a higher frequency of polymorphism in human DNA. Cell 1984; 36(1):131-138.

71. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001; 61(8):3225-3229.

72. Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet 1988; 78(2):151-155.

73. Brueckner B, Lyko F. DNA methyltransferase inhibitors: Old and new drugs for an epigenetic cancer therapy. Trends Pharmacol Sci 2004; 25(11):551-554.

74. Robertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet 2000; 1(1):11-19.

75. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429(6990):457-463.

76. Havlis J, Trbusek M. 5-Methylcytosine as a marker for the monitoring of DNA meth-ylation. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781(1-2):373-392.

77. Hong KM, Yang SH, Guo M, Herman JG, Jen J. Semiautomatic detection of DNA methylation at CpG islands. BioTechniques 2005; 38(3):354, 356, 358.

78. Shi H, Maier S, Nimmrich I, Yan PS, Caldwell CW, Olek A, et al. Oligonucleotide-based microarray for DNA methylation analysis: Principles and applications. J Cell Biochem 2003; 88(1):138-143.

79. Chen CM, Chen HL, Hsiau TH, Hsiau AH, Shi H, Brock GJ, et al. Methylation target array for rapid analysis of CpG island hypermethylation in multiple tissue genomes. Am J Pathol 2003; 163(1):37-45.

80. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998; 4(7):844-847.

81. Pfarr W, Webersinke G, Paar C, Wechselberger C. Immunodetection of 5'-methylcytosine on Giemsa-stained chromosomes. BioTechniques 2005; 38(4):527-528, 530.

82. Brock GJ, Huang TH, Chen CM, Johnson KJ. A novel technique for the identification of CpG islands exhibiting altered methylation patterns (ICEAMP). Nucleic Acids Res 2001; 29(24):E123.

83. Rousseau F, Heitz D, Biancalana V, Blumenfeld S, Kretz C, Boue J, et al. Direct diagnosis by DNA analysis of the fragile X syndrome of mental retardation. N Engl J Med 1991; 325(24):1673-1681.

84. Xiong Z, Laird PW. COBRA: A sensitive and quantitative DNA methylation assay. Nucleic Acids Res 1997; 25(12):2532-2534.

85. van Steensel B. Mapping of genetic and epigenetic regulatory networks using mi-croarrays. Nat Genet 2005; 37(6 Suppl):S18-S24.

86. Golub TR. Genome-wide views of cancer. N Engl J Med 2001; 344(8):601-602.

87. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999; 286(5439):531-537.

88. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403(6769):503-511.

89. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347(25):1999-2009.

90. van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415(6871):530-536.

91. Camp RL, Dolled-Filhart M, King BL, Rimm DL. Quantitative analysis of breast cancer tissue microarrays shows that both high and normal levels of HER2 expression are associated with poor outcome. Cancer Res 2003; 63(7):1445-1448.

92. Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 1999; 402(6758):187-191.

93. Amir RE, Van dV, I, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23(2):185-188.

94. Wan M, Lee SS, Zhang X, Houwink-Manville I, Song HR, Amir RE, et al. Rett syndrome and beyond: Recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 1999; 65(6):1520-1529.

95. Moretti P, Zoghbi HY. MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev 2006; 16(3):276-281.

96. Miller G. Neuroscience. Getting a read on Rett syndrome. Science 2006; 314(5805): 1536-1537.

97. Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 2005; 37(1):31-40.

98. Barlow DP. Gametic imprinting in mammals. Science 1995; 270(5242):1610-1613.

99. Falls JG, Pulford DJ, Wylie AA, Jirtle RL. Genomic imprinting: Implications for human disease. Am J Pathol 1999; 154(3):635-647.

100. Jin P, Warren ST. Understanding the molecular basis of fragile X syndrome. Hum Mol Genet 2000; 9(6):901-908.

101. Miller G. Biomedical research. Fragile X's unwelcome relative. Science 2006; 312(5773):518-521.

102. Pal N, Wadey RB, Buckle B, Yeomans E, Pritchard J, Cowell JK. Preferential loss of maternal alleles in sporadic Wilms' tumour. Oncogene 1990; 5(11):1665-1668.

103. Schroeder WT, Chao LY, Dao DD, Strong LC, Pathak S, Riccardi V, et al. Non-random loss of maternal chromosome 11 alleles in Wilms tumors. Am J Hum Genet 1987; 40(5):413-420.

104. Scrable H, Cavenee W, Ghavimi F, Lovell M, Morgan K, Sapienza C. A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc Natl Acad Sci USA 1989; 86(19):7480-7484.

105. Glenn CC, Porter KA, Jong MT, Nicholls RD, Driscoll DJ. Functional imprinting and epigenetic modification of the human SNRPN gene. Hum Mol Genet 1993; 2(12):2001-2005.

106. Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, el Maarri O, Horsthemke B. Epimutations in Prader-Willi and Angelman syndromes: A molecular study of 136 patients with an imprinting defect. Am J Hum Genet 2003; 72(3):571-577.

107. Mannens M, Hoovers JM, Redeker E, Verjaal M, Feinberg AP, Little P, et al. Parental imprinting of human chromosome region 11p15.3-pter involved in the Beckwith-Wiedemann syndrome and various human neoplasia. Eur J Hum Genet 1994; 2(1):3-23.

108. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301(5895):89-92.

109. Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 1988; 48(5):1159-1161.

110. Baylin SB, Hoppener JW, de Bustros A, Steenbergh PH, Lips CJ, Nelkin BD. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res 1986; 46(6):2917-2922.

111. Feinberg AP. Cancer epigenetics takes center stage. Proc Natl Acad Sci USA 2001; 98(2):392-394.

112. Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP. Relaxation of imprinted genes in human cancer. Nature 1993; 362(6422):747-749.

113. Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature 1993; 362(6422):749-751.

114. Klein G. Epigenetics: Surveillance team against cancer. Nature 2005; 434(7030): 150.

115. Rideout WM, III, Coetzee GA, Olumi AF, Jones PA. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 1990; 249(4974):1288-1290.

116. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88(3): 323-331.

117. Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, et al. Loss of IGF2 imprinting: A potential marker of colorectal cancer risk. Science 2003; 299(5613):1753-1755.

118. Sakatani T, Kaneda A, Iacobuzio-Donahue CA, Carter MG, Witzel SD, Okano H, et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 2005; 307(25 Mar):1976-1978.

119. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 1999; 96(15): 8681-8686.

120. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37(4):391-400.

121. Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2'-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 2000; 60(21):6039-6044.

122. Ricciardiello L, Goel A, Mantovani V, Fiorini T, Fossi S, Chang DK, et al. Frequent loss of hMLH1 by promoter hypermethylation leads to microsatellite instability in adenomatous polyps of patients with a single first-degree member affected by colon cancer. Cancer Res 2003; 63(4):787-792.

123. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA 1994; 91(24):11733-11737.

124. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hyper-methylation is a common event in primary human neoplasia. Cancer Res 1999; 59(4):793-797.

125. Esteller M, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Watkins DN, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyl-transferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res 2000; 60(9):2368-2371.

126. Bastian PJ, Yegnasubramanian S, Palapattu GS, Rogers CG, Lin X, De Marzo AM, et al. Molecular biomarker in prostate cancer: The role of CpG island hyperme-thylation. Eur Urol 2004; 46(6):698-708.

127. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med 2003; 348(Mar 6):919-932.

128. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends Genet 2000; 16(4):168-174.

129. Warrell RP Jr, He LZ, Richon V, Calleja E, Pandolfi PP. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 1998; 90(21):1621-1625.

130. Stirewalt DL, Radich JP. Malignancy: Tumor suppressor gene aberrations in acute myelogenous leukemia. Hematology 2000; 5(1):15-25.

131. Chim CS, Tam CY, Liang R, Kwong YL. Methylation of p15 and p16 genes in adult acute leukemia: Lack of prognostic significance. Cancer 2001; 91(12):2222-2229.

132. Gilbert J, Gore SD, Herman JG, Carducci MA. The clinical application of targeting cancer through histone acetylation and hypomethylation. Clin Cancer Res 2004; 10(14):4589-4596.

133. Ley TJ, DeSimone J, Anagnou NP, Keller GH, Humphries RK, Turner PH, et al. 5-Azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. N Engl J Med 1982; 307(24):1469-1475.

134. Koshy M, Dorn L, Bressler L, Molokie R, Lavelle D, Talischy N, et al. 2-Deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood 2000; 96(7):2379-2384.

135. Uchida T, Kinoshita T, Nagai H, Nakahara Y, Saito H, Hotta T, et al. Hy-permethylation of the p15INK4B gene in myelodysplastic syndromes. Blood 1997; 90(4):1403-1409.

136. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: A study of the cancer and leukemia group B. J Clin Oncol 2002; 20(10):2429-2440.

137. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21(1):103-107.

138. Chiurazzi P, Pomponi MG, Willemsen R, Oostra BA, Neri G. In vitro reactivation of the FMR1 gene involved in fragile X syndrome. Hum Mol Genet 1998; 7(1):109-113.

139. Chiurazzi P, Pomponi MG, Pietrobono R, Bakker CE, Neri G, Oostra BA. Sy-nergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum Mol Genet 1999; 8(12):2317-2323.

0 0

Post a comment