Halki Diabetes Remedy

Diabetes Diet Plan

Get Instant Access

1. Tauzin B. 418 Biotechnology Medicines in Testing Promise to Bolster the Arsenal Against Diseases. Medicines in Development, Biotechnology, 2006.

2. Walsh G. Biopharmaceutical benchmarks 2006. Nat Biotech 2006; 24(7):769-776.

3. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Disco 2007; 6:67-74.

4. Morishita M, Peppas NA. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today 2006; ll(19-20):905-910.

5. Costantino HR, Ilium L, Brandt G, et al. Intranasal delivery: physiochemical and therapeutic aspects. Int J Pharm 2007; 337:1-24.

6. Mahato RI, Narang AS, Thoma L, et al. Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst 2003; 20(2-3): 153-214.

7. Frokjaer S, Hovgaard L. Pharmaceutical Formulation Development of Pepides and Proteins. London: Taylor & Francis, 2000.

8. Shekunov BY, Cattopadhyay P, Tong HHY, et al. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res 2007; 24(2):203-227.

9. Sarmento B, Ferreira DC, Jorgensen L, et al. Probing insulin's secondary structure after entrapment into alginate/chitosan nanoparticles. Eur J Pharm Biopharm 2007; 65:10-17.

10. Prego C, Fabre M, Torres D, et al. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm Res 2006; 23(3):549-556.

11. Albrecht K, Bernkop-Schnürch A. Thiomers: forms, functions and applications to nano-medicine. Nanomedicine 2007; 2(l):41-50.

12. Malkov D, Angelo R, Wang H, et al. Oral delivery of insulin with the eligen(R) technology: mechanistic studies. Curr Drug Deliv 2005; 2:191-197.

13. Qi R, Pingel M. Gastrointestinal absorption enhancement of insulin by administration of enteric microspheres and SNAC to rats. J Microencapsul 2004; 21(l):37-45.

14. El-Sayed MEH, Hoffmann AS, Stayton PS. Rational design of composition and activity correlations for pH-responsive and glutathione-reactive polymer therapeutics. J Control Release 2005; 104:417^127.

15. Stayton PS, El-Sayed MEH, Murthy N, et al. Smart delivery systems for biomolecular therapeutics. Orthod Craniofacial Res 2005; 8:219-225.

16. Deshayes S, Morris M, Heitz F, et al. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev 2008; 60(4-5):537-547.

17. Deanda F, Smith KM, Liu J, et al. GSSI, a general model for solute-solvent interactions. 1. Description of the model. Mol Pharm 2004; l(l):23-39.

18. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm 1999; 185(2): 129-188.

19. Pauling L, Corey RB, Branson HR. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sei U S A 1951; 37:205-211.

20. Schultz GE, Schirmer RH. Principles of Protein Structure. New York: Springer-Verlag, 1979.

21. Pauling L, Corey RB. The structure of synthetic polypeptides. Proc Natl Acad Sei USA 1951; 37:241-250.

22. Stickle DF, Presta LG, Dill KA, et al. Hydrogen bonding in globular proteins. J Mol Biol 1992; 226:1143-1159.

23. Linderstr0m-Lang KU, Schellman JA. Protein structure and enzyme activity. In: Boyer PD, Lardy H, Myrbäck K, eds. The Enzymes. New York: Academic Press Inc., 1959:443-510.

24. Chothia C. Principles that determine the structure of proteins. Ann Rev Biochem 1984; 53:537-572.

25. Brange J. Physical stability of proteins. In: Frokjaer S, Hovgaard L, eds. Pharmaceutical Formulation Development of Peptides and Proteins. London: Taylor & Francis, 2000:89-112.

26. Andrade JD. Principles of protein adsorption. In: Andrade JD, ed. Surface and Interfacial Aspects of Biomedical Polymers. New York: Plenum Press, 1985:1-80.

27. Brange J, Andersen L, Laursen ED, et al. Toward understanding insulin fibrillation. J Pharm Sei 1997; 86(5):517-525.

28. Brange J, Langkjaer L. Insulin structure and stability. In: Wang YJ, Pearlman R, eds. Stability and Characterisation of Protein and Peptide Drugs—Case Histories. New York: Plenum Press, 1993:315-350.

29. Parkins DA, Lashmar UT. The formulation of biopharmaceutical products. Pharm Sei Technol Today 2000; 3(4): 129-137.

30. Cleland JL, Powell MF, Shire SJ. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst 1993; 10(4):307-377.

31. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 2007; 59(6):478^190.

32. Reubsaet JL, Beijnen JH, Bult A, et al. Analytical techniques used to study the degradation of proteins and peptides: physical instability. J Pharm Biomed Anal 1998; 17(6-7):979-984.

33. Kauzmann W. Some factors in the interpretation of protein denaturation. Adv Protein Chem 1959; 14:1-63.

34. Dickinson E. Proteins in solution and at interfaces. In: Goddard ED, Ananthapadmanabhan KP, eds. Interactions of Surfactants with Polymers and Proteins. Boca Ranton: CRC Press, 1993:295-317.

35. Dickinson E, Matsumura Y. Proteins at liquid interfaces: role of the molten globule state. Colloids Surf B Biointerf 1994; 3(1-2): 1-17.

36. Shortle D. The denatured state (the other half of the folding equation) and its role in protein stability. FASEB J 1996; 10:27-34.

37. Jaenicke R. Protein stability and molecular adaptation to extreme conditions. Eur J Biochem 1991; 202(3) :715-728.

38. Tanford C. Protein denaturation. Adv Protein Chem 1968; 23:121-282.

39. Bam NB, Cleland JL, Randolph TW. Molten globule intermediate of recombinant human growth hormone: stabilization with surfactants. Biotechnol Prog 1996; 12(6):801-809.

40. Manning M, Patel K, Borchardt RT. Stability of protein pharmaceuticals. Pharm Res 1989; 6(11):903-918.

41. Dobson CM. Unfolded proteins, compact states and molten globules. Curr Opin Struct Biol 1992; 2:6-12.

42. Lefebvre J, Relkin P. Denaturation of globular proteins in relation to their functional properties. In: Magdassi S, ed. Surface Activity of Proteins—Chemical and Physiochemical Modifications. New York: Marcel Dekker Inc., 1996:181-236.

43. Haynes CA, Norde W. Structures and stabilities of adsorbed proteins. J Colloid Interface Sei 1995; 169(2):313-328.

44. Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm 2005; 289:1-30.

45. Sadana A. Interfacial protein adsorption and inactivation. Bioseparation 1993; 3(5):297-320.

46. Fagain CO. Understanding and increasing protein stability. Biochim Biophys Acta 1995; 1252(1): 1-14.

47. Chi EY, Krishnan S, Randolph TW, et al. Physical stability of proteins in aqueous solution: mechanism and driving forces in normative protein aggregation. Pharm Res 2003; 20(9): 1325-1336.

48. Fink AL. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 1998; 3(1):R9-R23.

49. Katakam M, Bell LN, Banga AK. Effect of surfactants on the physical stability of recombinant human growth hormone. J Pharm Sei 1995; 84(6):713-716.

50. Dong A, Prestrelski SJ, Allison SD, et al. Infrared spectroscopic studies of lyophilization- and temperature-induced protein aggregation. J Pharm Sei 1995; 84(4):415-424.

51. Treuheit MJ, Kosky AA, Brems DN. Inverse relationship of protein concentration and aggregation. Pharm Res 2002; 19(4):511-516.

52. Vestergaard B, Groenning M, Roessle M, et al. A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PloS Biol 2007; 5(5): 1089-1097.

53. Nielsen L, Khurana R, Coats A, et al. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 2001; 40(20):6036-6046.

54. Andrade JD, Hlady V, Wei AP, et al. Proteins at interfaces: principles, multivariate aspects, protein resistant surfaces, and direct imaging and manipulation of adsorbed proteins. Clin Mater 1992; ll(l^l):67-84.

55. Cheesman DF, Davies JT. Physiochemical and biological aspects of proteins at interfaces. Adv Protein Chem 1954; 9:439-501.

56. Green RJ, Hopkinson I, Jones RAL. Unfolding and intermolecular association in globular proteins adsorbed at interfaces. Langmuir 1999; 15:5102-5110.

57. MacRitchie F. Proteins at interfaces. Adv Protein Chem 1978; 32:283-326.

58. Norde W. The behaviour of proteins at interfaces, with special attention to the role of the structure stability of the protein molecule. Clin Mater 1992; 11(1—4):85-91.

59. Pugnaloni LA, Dickinson E, Ettelaie R, et al. Competitive adsorption of proteins and low-molecular-weight surfactants: computer simulation and microscopic imaging. Adv Colloid Interface Sei 2004; 107(1):27^19.

60. Mollmann SH, Bukrinsky JT, Frokjaer S, et al. Adsorption of human insulin and AspB28 insulin on a PTFE-like surface. J Colloid Interface Sei 2005; 286:28-35.

61. Norde W, Giacomelli CE. BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J Biotechnol 2000; 79(3):259-268.

62. Goolcharran C, Khossravi M, Borchardt RT. Chemical pathways of peptide and protein degradation. In: Frokjaer S, Hovgaard L, eds. Pharmaceutical Formulation Development of Peptides and Proteins. London: Taylor & Francis, 2000:70-88.

63. Kerwin BA, Remmele RL. Protect from light: photodegradation and protein biologies. J Pharm Sei 2007; 96(6): 1468-1479.

64. Violand BN, Siegel NR. Protein and peptide chemical and physical stability. In: Reid RE, ed. Peptide and Protein Drug Analysis. New York: Marcel Dekker, 2000:257-284.

65. Krishnamurthy R, Manning MC. The stability factor: importance in formulation development. Curr Pharm Biotech 2002; 3:361-371.

66. Council of Europe. European Pharmacopoeia. 5th ed. Strasbourg: Council of Europe, 2005.

67. Akers MJ, DeFelippis MR. Peptides and proteins as parenteral solutions. In: Frokjaer S, Hovgaard L, eds. Pharmaceutical Formulation Development of Peptides and Proteins. London: Taylor & Francis, 2000:145-177.

68. Hermeling S, Jiskoot W, Crommelin DJA, et al. Reaction to the paper: interaction of polysorbate with erythropoietin: a case study in protein-surfactant interactions. Pharm Res 2006; 23(3):641-642.

69. Schellekens H, Casadevall N. Immunogenisity of recombinant human proteins: causes and consequences. J Neurol 2004; 251(suppl 2):II/4-II/9.

70. Timasheff SN. Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 2002; 41(46): 13473-13482.

71. Huus K, Havelund S, Olsen HB, et al. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer. Biochemistry 2006; 45(12):4014-4024.

72. Govardhan C, Khalaf N, Jung CW, et al. Novel long-acting crystal formulation of human growth hormone. Pharm Res 2005; 22(9): 1461-1470.

73. Arakawa T, Prestrelski SJ, Kenney WC, et al. Factors affecting short-term and long-term stabilities of proteins. Adv Drug Deliv Rev 2001; 46(l-3):307-326.

74. Tang X, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res 2004; 21(2): 191-200.

75. Wang W. Lyophylization and development of solid protein pharmaceuticals. Int J Pharm 2000; 203:1-60.

76. Kett V, McMahon D, Ward K. Freeze-drying of protein pharmaceuticals—the application of thermal analysis. Cryo Letters 2004; 25(6):389^04.

77. Chang L, Shepard D, Sun J, et al. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J Pharm Sci 2005; 94(7): 1427-1444.

78. Carpenter JF, Pikal MJ, Chang BS, et al. Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res 1997; 14(8):969-975.

79. Chobert J-M, Gaudin J-C, Dalgalarrondo M, et al. Impact of Maillard type glycation on properties of beta-lactoglobulin. Biotechnol Adv 2006; 24:629-632.

80. Schwegman JJ, Hardwick LM, Akers MJ. Practical formulation and process development of freeze-dried products. Pharm Dev Technol 2005; 10:151-173.

81. Shoyele SA, Cawthorne S. Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev 2006; 58:1009-1029.

82. Maa Y-F, Prestrelski SJ. Biopharmaceutical powders: particle formation and formulation considerations. Curr Pharm Biotechnol 2000; 1:283-302.

83. Degim IT, Celebi N. Controlled delivery of peptides and proteins. Curr Pharm Design 2007; 13:99-117.

84. Weers JG, Tarara TE, Clark AR. Design of fine particles for pulmonary drug delivery. Expert Opin Drug Deliv 2007; 4(3):297-313.

85. Shoyele SA, Slowey A. Prospects of formulating proteins/peptides as aerosols for pulmonal drug delivery. Int J Pharm 2006; 314:1-8.

86. Summary of Product Characteristics for Pulmozyme. Available at: http://www.produktresume. dk/docushare/dsweb/Get/Document-14730/Pulmozyme%2CJ)inhalationsv%C3%83%C2% A6skeJ)tilJ)nebulisator%2CJ)opl%C3%83%C2%B8sningJ)lJ)mg-ml.doc. Accessed December 2007.

87. Scientific Discussion. Available at: content/con_index.jsp&setShowHighlightOn=../content/con_index.jsp. Accessed December 2007.

88. Scientific Discussion. Available at: exubera/058806en6.pdf. Accessed December 2007.

89. Novo Nordisk A/S pipeline rFXIII Congenital deficiency. Available at: http://www. Accessed December 2007.

90. Cheng YH, Dyer M, Jabbal-Gill I, et al. Intranasal delivery of recombinant human growth hormone (somatropin) in sheep using chitosan-based powder formulations. Eur J Pharm Sci 2005; 26:9-15.

91. Summary of Product Characteristics for Suprecur. Available at: http://www.produktresume. dk/docushare/dsweb/Get/Document-15675/Suprecur%2C+n%C3%A6sespray%2C+opl% C3%B8sning+0%2C15+mg-dosis.doc. Accessed December 2007.

92. Summary of Product Characteristics for Minirin. Available at: docushare/dsweb/Get/Document-12804/Minirin%2C+n%C3%A6sespray%2C+opl%C3%

B8sning+2%2C5+mikrog-dosis+og+10+mikrog-dosis.doc. Accessed December 2007.

93. Ilium L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci 2007; 96(3):473^183.

94. Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Disco 2003; 2:289-295.

95. Summary of Product Characteristics for Minirin. Available at: docushare/dsweb/Get/Document-22023/Minirin%2C+smeltetabletter+60+mikrog% 2C+120+mikrog+og+240+mikrog.doc. Accessed December 2007.

96. Summary of Product Characteristics for Nocutil. Available at: docushare/dsweb/Get/Document-22173/Nocutil%2C+tabletter+0%2Cl+mg+og+0% 2C2+mg.doc. Accessed December 2007.

97. Sarmento B, Ribeiro AJ, Veiga F, et al. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 2007; 8:3054-3060.

98. Delie F, Blanco-Prieto MJ. Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules 2005; 10:65-80.

99. Summary of Product Characteristics for Grazax. Available at: docushare/dsweb/Get/Document-23337/Grazax%2C+smeltetabletter+75.000+SQ-T.doc. Accessed December 2007.

100. Badkar AV, Banga AK. Electrically enhanced transdermal delivery of a macromolecule. J Pharm Pharmacol 2002; 54:907-912.

101. Badkar AV, Smith AM, Eppstein JA, et al. Transdermal delivery of interfaron alpha-2B using microporation and iontophoresis in hairless rats. Pharm Res 2001; 24(7): 1389-1395.

102. Levin G, Gershonowitz A, Sacks H, et al. Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res 2005; 22(4):550-555.

103. Schuetz YB, Naik A, Guy RH, et al. Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert Opin Drug Deliv 2005; 2(3):533-548.

104. Summary of Product Characteristics for Zoladex. Available at: docushare/dsweb/Get/Document-18419/Zoladex%2C+implantat+3%2C6+mg+og+10% 2C8+mg.doc. Accessed December 2007.

105. Summary of Product Characteristics for Lupron Depot. Available at: http://www.accessdata. LUPRON%20DEPOT. Accessed December 2007.

106. Summary of Product Characteristics for Decapeptyl Depot. Available at: http://www. og+solvens+til+injektionsv%C3%A6ske%2C+suspension%2C+3+%2C75+mg.doc. Accessed December 2007.

107. Summary of Product Characteristics for Pamorelin. Available at: docushare/dsweb/Get/Document-20482/Pamorelin%2C+pulver+og+solvens+til+injektionsv %C3%A6ske%2C+depotsuspension.doc. Accessed December 2007.

108. Summary of Product Characteristics for Sandostatin LAR. Available at: http://www. og+solvens+til+injektionsv%C3%A6ske%2C+suspension.+10+mg%2C+20+mg+og+ 30+mg.doc. Accessed December 2007.

109. Summary of Product Characteristics for Nutropin Depot. Available at: http://www.accessdata.fda. gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DrugDetails. Accessed December 2007.

110. Kang F, Jiang G, Hinderliter A, et al. Lysozyme stability in primary emulsion for PLGA microsphere preparation: effect of recovery methods and stabilizing excipients. Pharm Res 2002; 19(5):629-633.

111. Tracy MA. Development and scale-up of a microsphere protein delivery system. Biotechnol Prog 2005; 14:108-115.

112. Hahn SK, Kim SJ, Kim MJ, et al. Characterization and in vivo study of sustained-release formulation of human growth hormone using sodium hyaluronate. Pharm Res 2004; 21(8): 1374-1381.

113. Kim SJ, Hahn SK, Kim MJ, et al. Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J Control Release 2005; 104:323-335.

114. Tracy MA. Development and scale-up of a microshere protein delivery system. Biotechnol Prog 1998; 14:108-115.

115. Kwon YM, Baudys M, Knutson K, et al. In situ study of insulin aggregation induced by water-organic solvent interface. Pharm Res 2001; 18(12): 1754-1759.

116. Kim HK, Park TG. Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation stability and incomplete release mechanism. Biotechnol Bioeng 1999; 65(6):659-667.

117. Cleland JL, Mac A, Boyd B, et al. The stability of recombinant human growth hormone in poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res 1997; 14:4-5.

118. Chan Y-P, Meyrueix R, Kravtzoff R, et al. Review on Medusa (R); a polymer-based sustained release technology for protein and peptide drugs. Expert Opin Drug Deliv 2007; 4(4):441-451.

119. Flamel Technologies: technologies and products. Available at: http://www.flamel-technologies. fr/techAndProd/index.shtml. Accessed December 2007.

120. Kim K, Fisher JP. Nanoparticle technology in bone tissue engineering. J Drug Target 2007; 15(4):241-252.

121. Mehnert W, Mader K. Solid lipid nanoparticles production, characterization and applications. Adv Drug Deliv Rev 2001; 47(2-3): 165-196.

122. Ye Q, Asherman J, Stevenson M, et al. DepoFoam(TM) technology: a vehicle for controlled delivery of protein and peptide drugs. J Control Release 2000; 64(1-3): 155-166.

123. Howell SB. Clinical application of a novel sustained-release injectable drug delivery system: Depofoam™ technology. Cancer J 2001; 7(3):219-227.

124. Pelton JT, McLean LR. Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 2000; 277(2): 167-176.

125. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005; 10(21):1451-1458.

126. Veronese FM, Morpurgo M. Bioconjugation in pharmaceutical chemistry. Farmaco 1999; 54:497-516.

127. Sola RJ, Griebenow K. Chemical glycosylation: new insights on the interralation between protein structural mobility, thermodynamic stability, and catalysis. FEBS Let 2006; 580: 1685-1690.

128. Sola RJ. Rodriguez-Martinez JA, Griebenow K. Modulation of protein biophysical properties by chemical glycosylation: biochemical insights and biomedical implicationsw. Cell Mol Life Sci 2007; 64:2133-2152.

129. Soran H, Younis N. Insulin detemir: a new basal insulin analogue. Diabetes Obes Metab 2006; 8:26-30.

130. Knudsen LB, Nielsen PF, Huufeldt PO, et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem 2000; 43:1664-1669.

131. Novo Nordisk A/S pipeline Vagifem®. Available at: rd_pipeline/rd_pipeline.asp?showid=4. Accessed December 2007.

132. Jars MU, Hvass A, Waaben D. Insulin aspart (Aspb28 Human insulin) derivatives formed in pharmaceutical solutions. Pharm Res 2002; 19(5):621-628.

133. Setter SM, Corbett CF, Campbell RK, et al. Insulin aspart: a new rapid-acting insulin analog. Ann Pharmacother 2000; 34:1423-1431.

134. Scientific Discussion. Available at: Novorapid/272799en6.pdf. Accessed December 2007.

135. Heise T, Nosek L, Spitzer H, et al. Insulin glulisine: a faster onset of action compared with insulin lispro. Diabetes Obes Metab 2007; 9:746-753.

136. Scientific Discussion. Available at: Humalog/060195en6.pdf. Accessed December 2007.

137. Scientific Discussion. Available at: apidra/121804en6.pdf. Accessed December 2007.

138. Wang F, Carabino JM, Vergara CM. Insulin glargine: a systematic review of a long-acting insulin analogue. Clin Ther 2003; 25(6): 1541-1577.

139. Scientific Discussion. Available at: Lantus/061500en6.pdf. Accessed December 2007.

140. Campbell RK, White JR, Levien T, et al. Insulin glargine. Clin Ther 2001; 23(12): 1938-1957.

141. Summary of Product Characteristics for PROLEUKIN® (aldesleukin). Available at: http:// Accessed December 2007.

142. Katre NV. The conjugation of proteins with polyethylene glycol and other polymers—altering properties of proteins to enhance their therapeutic potential. Adv Drug Deliv Rev 1993; 10: 91-114.

143. Summary of Product Characteristics for Adagen®. Available at: http://www.accessdata.fda. gov/scripts/cder/dragsatfda/index.cfm?fuseaction=Search.DragDetails. Accessed December 2007.

144. Hussar DA. New drug: varenicline, tatrate, insulin glulisine, and insulin detemir. J Am Pharm Assoc 2006; 46(4):524-527.

145. Jones MC, Patel M. Insulin detemir: a long-acting insulin product. Am J Health Syst Pharm 2006; 63:2466-2472.

146. Sola RJ, Al-Azzam W, Griebenow K. Engineering of protein thermodynamic, kinetic, and colloidal stability: chemical glycosylation with monofunctional activated glycans. Biotechnol Bioeng 2006; 94(6): 1072-1079.

147. Herron JN, Jiskoot W, Crommelin DJA. Physical Methods to Characterize Pharmaceutical Proteins. New York: Plenum Press, 1995.

148. Freire E. Differential scanning calorimetry. In: Shirley BA, ed. Protein Stability and Folding— Theory and Practice. Totowa, NJ: Humana Press, 1995:191-218.

149. Jiskoot W, Crommelin DJA. Methods for Structural Analysis of Protein Pharmaceuticals. Arlington, VA: American Association of Pharmaceutical Scientists, 2005.

150. Baudys M, Kim SW. Peptide and protein characterization. In: Frokjaer S, Hovgaard L, eds. Pharmaceutical Formulation Development of Peptides and Proteins. London: Taylor & Francis, 2000:41-69.

151. Jackson M, Mantsch HH. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 1995; 30(2):95-120.

152. Cooper EA, Knutson K. Fourier transform infrared spectroscopy investigations of protein structure. In: Herron JN, Jiskoot W, Crommelin DJA, eds. Physical Methods to Characterize Pharmaceutical Proteins. New York: Plenum Press, 1995:101-143.

153. Haris PI, Severcan F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal 1999; 7(1^1):207-221.

154. Burnett GR, Rigby NM, Clare Mills EN, et al. Characterization of the emulsification properties of 2S albumins from sunflower seed. J Colloid Interface Sei 2002; 247(1): 177-185.

155. Burstein EA, Vedenkina NS, Ivkova MN. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol 1973; 18(4):263-279.

156. Vivian JT, Callis PR. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 2001; 80(5):2093-2109.

157. Eftink MR. Fluorescence techniques for studying protein-structure. Methods Biochem Anal 1991; 35:127-205.

158. Anderson GJ. Circular dichoism and Fourier transform infra-red analysis of polypeptide conformation. In: Reid RE, ed. Peptide and Protein Drug Analysis. New York: Marcel Dekker, 2000:753-774.

159. Lakowicz JR. Principles of Fluorescence Spectroscopy. 2nd ed. New York: Kluwer Academic/ Plenum Publishers, 1999.

160. Freire E. Statistical thermodynamic analysis of the heat capacity function associated with protein folding-unfolding transitions. Comments Mol Cell Biophys 1989; 6(2): 123-140.

161. Robertson AD, Murphy KP. Protein structure and the energetics of protein stability. Chem Rev 1997; 97:1251-1267.

162. Ma C-Y, Harwalkar VR. Thermal analysis of food proteins. Adv Food Nutr Res 1991; 35:317-366.

163. Bam NB, Cleland JL, Yang J, et al. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J Pharm Sei 1998; 87(12): 1554-1559.

164. Kasimova MR, Milstein SJ, Freire E. The conformational equilibrium of human growth hormone. J Mol Biol 1998; 277(2):409^H8.

165. Moriyama Y, Kawasaka Y, Takeda K. Protective effect of small amounts of sodium dodecyl sulfate on the helical structure of bovine serum albumin in thermal denaturation. J Colloid Interface Sei 2003; 257(1):41^16.

166. Potera C. Antisense—down, but not out. Nat Biotech 2007; 25(5):497^199.

167. Summary of Product Characteristics for Vitravene®. Available at: scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DragDetails. Accessed December 2007.

168. Summary of Product Characteristics for Macugen®. Available at: http://www.accessdata.fda. gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DragDetails. Accessed December 2007.

169. Pearson S, Jia H, Kandachi K. China approves first gene therapy. Nat Biotech 2004; 22:3-4.

170. Swayze EE, Bhat B. The medicinal chemistry of oligonucleotides. In: Crooke ST, ed. Antisense Drug Technology. Principles, Strategies and Applications. Boca Raton: CRC Press, 2006:143-182.

171. Birchall J. Pulmonary delivery of nucleic acids. Expert Opin Drug Deliv 2007; 4(6):575-578.

172. Hardee GE, Tillman LG, Geary RS. Routes and formulations for delivery of antisense oligonucleotides. In: Crooke ST, ed. Antisense Drug Technology. Principles, Strategies and Applications. Boca Raton: CRC Press, 2006:217-236.

173. Behlke MA. Progress towards in vivo use of siRNAs. Mol Ther 2006; 13(4):644-670.

174. MacLachlan I. Liposomal formulations for nucleic acid delivery. In: Crooke ST, ed. Antisense Drug Technology. Principles, Strategies and Applications. Boca Raton: CRC Press, 2006: 237-270.

175. Foged C, Nielsen HM. Cell penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv 2008; 5(1): 105-117.

176. Kaneda Y. Virosomes: evolution of the liposome as a targeted drug delivery system. Adv Drug Deliv Rev 2000; 43(2-3): 197-205.

177. Oliveira S, van Rooy I, Kranenburg O, et al. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int J Pharm 2007; 331(2):211-214.

178. Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 2006; 116(2):255-264.

179. Escriou V, Carriere M, Scherman D, et al. NLS bioconjugates for targeting therapeutic genes to the nucleus. Adv Drug Deliv Rev 2003; 55(2):295-306.

180. Woodcock J, Griffin J, Behrman R, et al. The FDA's assessment of follow-on protein products: a historical perspective. Nat Rev Drug Disco 2007; 6(6):437-442.

Was this article helpful?

0 0
Delicious Diabetic Recipes

Delicious Diabetic Recipes

This brilliant guide will teach you how to cook all those delicious recipes for people who have diabetes.

Get My Free Ebook

Post a comment