Conclusions

In this chapter, we established the possibilities of using roGFPs as real-time redox reporters in soil-grown plants. With the use of specific cell promoters, it is possible to target distinct cell compartments and tissues and monitor changes in GSH redox state to determine the effects of ROS on specific cellular components. This would remove the need for confocal microscopy, which would limit the size and type of plants that could be used (13). The roGFP1-R12 is a good starting point to develop an intact plant system, as it encompasses several advantages over other variants of GFP, namely dual excitation peaks allowing ratiomet-ric measurements, insensitivity to pH and halide ions, increased response times enabling real time measurements, and appropriate emission wavelengths allowing detection in green leaves. With the addition of an alteration to prevent mRNA splicing in Arabi-dopsis, roGFP1-R12 is an ideal candidate for developing a redox reporter system in whole plants.

References

1. Apel, K. and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55, 373-399.

2. Hanson, G. T., Aggelers, R., Oglesbees, D., Cannon, M., Capaldis, R. A., Tsien, R. Y., and Remington, S. J. (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279, 13044-13053.

3. LeMoan, N., Clement, G., Le Maout, S., Tacnet, F., and Toledano, M. B. (2006) The Saccharomyces cerevisiae proteome of oxidized protein thiols. ( Biol Chem 281, 10420-10430.

4. Mullineaux, P. M., Karpinski, S., and Baker, N. R. (2006) Spatial dependence for hydrogen peroxide-directed signalling in light-stressed plants. Plant Physiol 141, 346-350.

5. Bechtold, U., Karpinski, S., and Mullineaux, P. M. (2005) The influence of the light environment and photosynthesis on oxida-tive signalling responses in plant-biotrophic pathogen interactions. Plant Cell Environ 28,1046-1055.

6. Gapper, C. and Dolan, L. (2006) Control of plant development by reactive oxygen species. Plant Physiol 141, 341-345.

7. Torres, M. A., Jones, J. D.G., and Dangl, J. L. (2006) Reactive oxygen species signalling in response to pathogens. Plant Physiol 141, 373-378.

8. Fryer, M. J., Ball, L., Oxborough, K., Karpinski, S., Mullineaux, P. M., and Baker, N. R. (2003) Control of Ascorbate Peroxi-dase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabi-dopsis leaves. Plant J 33, 691-705.

9 Ushio-Fukai,M. (2006) Localizing NADPH oxidase-derived ROS. Science STKE. www. stke.org/cgi/content/full/2006/349/re8 10. Mullineaux, P. M. and Rausch, T. (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photos Res 86, 459-474.

11. Noctor, G., Gomez, L., Vanacker, H., and Foyer, C. H. (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53, 1283-1304.

12. Jaing, K., Schwarzer, C., Lally, E., Zhang, S., Ruzin, S., Machen, S., Remington, J., and Feldman, L. (2006) Expression and characterization of a redox-sensing green fluorescence protein (reduction-oxidation-sensitive green fluorescence protein) in Arabidopsis. Plant Physiol 141, 397-403.

13. Fricker, M., Runions, J., and Moore, I. (2006) Quantitative fluorescence microscopy: From art to science. Ann Rev Plant Biol 57, 79-109.

14. Hartmann, T. N., Fricker, M. D., Rennenberg, H., and Meyer, A. J. (2003) Cell-specific measurement of cytosolic glutathione in poplar leaves. Plant Cell Environ 26, 965-975.

15. Gutierrez-Alcala, G., Gotor, C., Meyer, A. J., Fricker, M., Vega, J. M., and Romero, C. (2000) Glutathione biosynthesis in Arabidopsis trichome cells. Proc Natl Acad Sci USA 97,11108-11113.

16. Chalfie, M. and Kain, S. (2005) Green Fluorescence Protein. Properties, Applications and Protocols. Methods of Biochemical Analysis. Wiley, London/New York.

17. Ostergaard, H., Henriksen, A., Hansen, F. G., and Winther, J. R. (2001) Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein. EMBOJ20, 5853-5862.

18. Haseloff, J., Siemering, K. R., Prasher, D. C., and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescence protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94, 2122-2127. '

19. Ostergaard, H., Tachibana, C., and Winther, J. R. (2004) Monitoring disulfide bond formation in the eukaryotic cytosol. J Cell Biol 166,337-345.

20. Dooley, C. T., Dore, T. M., Hanson, G. T., 26 Jackson, W. C., Remington, S. J., and Tsien,

21. Canon, M. B. and Remington, S. J. (2006) 27. Re-engineering redox-sensitive green fluorescence protein for improved response rate. Protein Sci 15, 45-57.

22. Hanson, R. E., Ostergaard, H., and Win-ther, J. R. (2005) Increasing the reactivity of an artificial dithiol-disulfide pair through 28. modification of the electrostatic milieu. Biochemistry 41, 5899-5906.

23. Remington, S. J. (2000) Structural basis for understanding spectral variations in green fluorescence protein. Bioluminescence and 29 chemiluminescence, Methods Enzymol 305, 196-211.

24. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., and Tsien, R. Y. (2001) Reducing the environmental sensitivity of yellow fluorescent protein. J Biol Chem 276, 30. 29188-29194.

25. Zhou, X., Carranco, R., Vitha, S., and Hall, T. C. (2005) The dark side of green fluorescent protein. New Phytol 168, 313-322.

Vogelmann, T. V. and Evans, J. R. (2002) Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant Cell Environ 25, 1313-1323. Ramonell, K. M., Kuang, A., Porterfield, D. M., Crispi, M. L., Xiao, Y., McClure, G., and Musgrave, M. E. (2001) Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana. Plant Cell Environ 24, 419-428. Alonso, R., Elvira, S., Castillo, J., and Gimeno, B. S. (2001) Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant Cell Environ 24, 905-916. Araki, N., Kusumi, K., Masamoto, K., Niwa, Y., and Iba, K. (2000) Temperature-sensitive Arabidopsis mutant deficient in 1-deoxy-D-xylulose-5-phosphate synthase within the plastid non-mevalonate pathway of isoprenoid biosynthesis. Physiol.. Plantarum. 108, 19-24. Bieza, K. and Lois, R. (2001) An Arabidop-sis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavinoids and other phenolics. Plant Physiol 126, 1105-1111.

Was this article helpful?

0 0

Post a comment