Other Data Relevant To An Evaluation Of Carcinogenicity And Its Mechanisms

In coming to an overall evaluation of carcinogenicity in humans (see pp. 25-27), the Working Group also considers related data. The nature of the information selected for the summary depends on the agent being considered.

For chemicals and complex mixtures of chemicals such as those in some occupational situations or involving cultural habits (e.g. tobacco smoking), the other data considered to be relevant are divided into those on absorption, distribution, metabolism and excretion; toxic effects; reproductive and developmental effects; and genetic and related effects.

Concise information is given on absorption, distribution (including placental transfer) and excretion in both humans and experimental animals. Kinetic factors that may affect the dose-response relationship, such as saturation of uptake, protein binding, metabolic activation, detoxification and DNA repair processes, are mentioned. Studies that indicate the metabolic fate of the agent in humans and in experimental animals are summarized briefly, and comparisons of data on humans and on animals are made when possible. Comparative information on the relationship between exposure and the dose that reaches the target site may be of particular importance for extrapolation between species. Data are given on acute and chronic toxic effects (other than cancer), such as organ toxicity, increased cell proliferation, immunotoxicity and endocrine effects. The presence and toxicological significance of cellular receptors is described. Effects on reproduction, teratogenicity, fetotoxicity and embryotoxicity are also summarized briefly.

Tests of genetic and related effects are described in view of the relevance of gene mutation and chromosomal damage to carcinogenesis (Vainio et al., 1992; McGregor et al., 1999). The adequacy of the reporting of sample characterization is considered and, where necessary, commented upon; with regard to complex mixtures, such comments are similar to those described for animal carcinogenicity tests on p. 18. The available data are interpreted critically by phylogenetic group according to the end-points detected, which may include DNA damage, gene mutation, sister chromatid exchange, micro-nucleus formation, chromosomal aberrations, aneuploidy and cell transformation. The concentrations employed are given, and mention is made of whether use of an exogenous metabolic system in vitro affected the test result. These data are given as listings of test systems, data and references. The data on genetic and related effects presented in the Monographs are also available in the form of genetic activity profiles (GAP) prepared in collaboration with the United States Environmental Protection Agency (EPA) (see also Waters et al., 1987) using software for personal computers that are Microsoft Windows® compatible. The EPA/IARC GAP software and database may be downloaded free of charge from www.epa.gov/gapdb.

Positive results in tests using prokaryotes, lower eukaryotes, plants, insects and cultured mammalian cells suggest that genetic and related effects could occur in mammals. Results from such tests may also give information about the types of genetic effect produced and about the involvement of metabolic activation. Some end-points described are clearly genetic in nature (e.g., gene mutations and chromosomal aberrations), while others are to a greater or lesser degree associated with genetic effects (e.g. unscheduled DNA synthesis). In-vitro tests for tumour-promoting activity and for cell transformation may be sensitive to changes that are not necessarily the result of genetic alterations but that may have specific relevance to the process of carcinogenesis. A critical appraisal of these tests has been published (Montesano et al., 1986).

Genetic or other activity detected in experimental mammals and humans is regarded as being of greater relevance than that in other organisms. The demonstration that an agent or mixture can induce gene and chromosomal mutations in whole mammals indicates that it may have carcinogenic activity, although this activity may not be detectably expressed in any or all species. Relative potency in tests for mutagenicity and related effects is not a reliable indicator of carcinogenic potency. Negative results in tests for mutagenicity in selected tissues from animals treated in vivo provide less weight, partly because they do not exclude the possibility of an effect in tissues other than those examined. Moreover, negative results in short-term tests with genetic end-points cannot be considered to provide evidence to rule out carcinogenicity of agents or mixtures that act through other mechanisms (e.g. receptor-mediated effects, cellular toxicity with regenerative proliferation, peroxisome proliferation) (Vainio et al., 1992). Factors that may lead to misleading results in short-term tests have been discussed in detail elsewhere (Montesano et al., 1986).

When available, data relevant to mechanisms of carcinogenesis that do not involve structural changes at the level of the gene are also described.

The adequacy of epidemiological studies of reproductive outcome and genetic and related effects in humans is evaluated by the same criteria as are applied to epidemio-logical studies of cancer.

Structure-activity relationships that may be relevant to an evaluation of the carcinogenicity of an agent are also described.

For biological agents — viruses, bacteria and parasites — other data relevant to carcinogenicity include descriptions of the pathology of infection, molecular biology (integration and expression of viruses, and any genetic alterations seen in human tumours) and other observations, which might include cellular and tissue responses to infection, immune response and the presence of tumour markers.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment