Studies Of Cancer In Humans

(a) Types of studies considered

Three types of epidemiological studies of cancer contribute to the assessment of carcinogenicity in humans — cohort studies, case-control studies and correlation (or ecological) studies. Rarely, results from randomized trials may be available. Case series and case reports of cancer in humans may also be reviewed.

Cohort and case-control studies relate the exposures under study to the occurrence of cancer in individuals and provide an estimate of relative risk (ratio of incidence or mortality in those exposed to incidence or mortality in those not exposed) as the main measure of association.

In correlation studies, the units of investigation are usually whole populations (e.g. in particular geographical areas or at particular times), and cancer frequency is related to a summary measure of the exposure of the population to the agent, mixture or exposure circumstance under study. Because individual exposure is not documented, however, a causal relationship is less easy to infer from correlation studies than from cohort and case-control studies. Case reports generally arise from a suspicion, based on clinical experience, that the concurrence of two events — that is, a particular exposure and occurrence of a cancer — has happened rather more frequently than would be expected by chance. Case reports usually lack complete ascertainment of cases in any population, definition or enumeration of the population at risk and estimation of the expected number of cases in the absence of exposure. The uncertainties surrounding interpretation of case reports and correlation studies make them inadequate, except in rare instances, to form the sole basis for inferring a causal relationship. When taken together with case-control and cohort studies, however, relevant case reports or correlation studies may add materially to the judgement that a causal relationship is present.

Epidemiological studies of benign neoplasms, presumed preneoplastic lesions and other end-points thought to be relevant to cancer are also reviewed by working groups. They may, in some instances, strengthen inferences drawn from studies of cancer itself.

(b) Quality of studies considered

The Monographs are not intended to summarize all published studies. Those that are judged to be inadequate or irrelevant to the evaluation are generally omitted. They may be mentioned briefly, particularly when the information is considered to be a useful supplement to that in other reports or when they provide the only data available. Their inclusion does not imply acceptance of the adequacy of the study design or of the analysis and interpretation of the results, and limitations are clearly outlined in square brackets at the end of the study description.

It is necessary to take into account the possible roles of bias, confounding and chance in the interpretation of epidemiological studies. By 'bias' is meant the operation of factors in study design or execution that lead erroneously to a stronger or weaker association than in fact exists between disease and an agent, mixture or exposure circumstance. By 'confounding' is meant a situation in which the relationship with disease is made to appear stronger or weaker than it truly is as a result of an association between the apparent causal factor and another factor that is associated with either an increase or decrease in the incidence of the disease. In evaluating the extent to which these factors have been minimized in an individual study, working groups consider a number of aspects of design and analysis as described in the report of the study. Most of these considerations apply equally to case-control, cohort and correlation studies. Lack of clarity of any of these aspects in the reporting of a study can decrease its credibility and the weight given to it in the final evaluation of the exposure.

Firstly, the study population, disease (or diseases) and exposure should have been well defined by the authors. Cases of disease in the study population should have been identified in a way that was independent of the exposure of interest, and exposure should have been assessed in a way that was not related to disease status.

Secondly, the authors should have taken account in the study design and analysis of other variables that can influence the risk of disease and may have been related to the exposure of interest. Potential confounding by such variables should have been dealt with either in the design of the study, such as by matching, or in the analysis, by statistical adjustment. In cohort studies, comparisons with local rates of disease may be more appropriate than those with national rates. Internal comparisons of disease frequency among individuals at different levels of exposure should also have been made in the study.

Thirdly, the authors should have reported the basic data on which the conclusions are founded, even if sophisticated statistical analyses were employed. At the very least, they should have given the numbers of exposed and unexposed cases and controls in a case-control study and the numbers of cases observed and expected in a cohort study. Further tabulations by time since exposure began and other temporal factors are also important. In a cohort study, data on all cancer sites and all causes of death should have been given, to reveal the possibility of reporting bias. In a case-control study, the effects of investigated factors other than the exposure of interest should have been reported.

Finally, the statistical methods used to obtain estimates of relative risk, absolute rates of cancer, confidence intervals and significance tests, and to adjust for confounding should have been clearly stated by the authors. The methods used should preferably have been the generally accepted techniques that have been refined since the mid-1970s. These methods have been reviewed for case-control studies (Breslow & Day, 1980) and for cohort studies (Breslow & Day, 1987).

(c) Inferences about mechanism of action

Detailed analyses of both relative and absolute risks in relation to temporal variables, such as age at first exposure, time since first exposure, duration of exposure, cumulative exposure and time since exposure ceased, are reviewed and summarized when available. The analysis of temporal relationships can be useful in formulating models of carcino-genesis. In particular, such analyses may suggest whether a carcinogen acts early or late in the process of carcinogenesis, although at best they allow only indirect inferences about the mechanism of action. Special attention is given to measurements of biological markers of carcinogen exposure or action, such as DNA or protein adducts, as well as markers of early steps in the carcinogenic process, such as proto-oncogene mutation, when these are incorporated into epidemiological studies focused on cancer incidence or mortality. Such measurements may allow inferences to be made about putative mechanisms of action (IARC, 1991a; Vainio et al., 1992).

(d ) Criteria for causality

After the individual epidemiological studies of cancer have been summarized and the quality assessed, a judgement is made concerning the strength of evidence that the agent, mixture or exposure circumstance in question is carcinogenic for humans. In making its judgement, the Working Group considers several criteria for causality. A strong association (a large relative risk) is more likely to indicate causality than a weak association, although it is recognized that relative risks of small magnitude do not imply lack of causality and may be important if the disease is common. Associations that are replicated in several studies of the same design or using different epidemiological approaches or under different circumstances of exposure are more likely to represent a causal relationship than isolated observations from single studies. If there are inconsistent results among investigations, possible reasons are sought (such as differences in amount of exposure), and results of studies judged to be of high quality are given more weight than those of studies judged to be methodologically less sound. When suspicion of carcino-genicity arises largely from a single study, these data are not combined with those from later studies in any subsequent reassessment of the strength of the evidence.

If the risk of the disease in question increases with the amount of exposure, this is considered to be a strong indication of causality, although absence of a graded response is not necessarily evidence against a causal relationship. Demonstration of a decline in risk after cessation of or reduction in exposure in individuals or in whole populations also supports a causal interpretation of the findings.

Although a carcinogen may act upon more than one target, the specificity of an association (an increased occurrence of cancer at one anatomical site or of one morphological type) adds plausibility to a causal relationship, particularly when excess cancer occurrence is limited to one morphological type within the same organ.

Although rarely available, results from randomized trials showing different rates among exposed and unexposed individuals provide particularly strong evidence for causality.

When several epidemiological studies show little or no indication of an association between an exposure and cancer, the judgement may be made that, in the aggregate, they show evidence of lack of carcinogenicity. Such a judgement requires first of all that the studies giving rise to it meet, to a sufficient degree, the standards of design and analysis described above. Specifically, the possibility that bias, confounding or misclassification of exposure or outcome could explain the observed results should be considered and excluded with reasonable certainty. In addition, all studies that are judged to be methodologically sound should be consistent with a relative risk of unity for any observed level of exposure and, when considered together, should provide a pooled estimate of relative risk which is at or near unity and has a narrow confidence interval, due to sufficient population size. Moreover, no individual study nor the pooled results of all the studies should show any consistent tendency for the relative risk of cancer to increase with increasing level of exposure. It is important to note that evidence of lack of carcinogenicity obtained in this way from several epidemiological studies can apply only to the type(s) of cancer studied and to dose levels and intervals between first exposure and observation of disease that are the same as or less than those observed in all the studies. Experience with human cancer indicates that, in some cases, the period from first exposure to the development of clinical cancer is seldom less than 20 years; studies with latent periods substantially shorter than 30 years cannot provide evidence for lack of carcinogenicity.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment