1. Sonnen AEH. Alternative and folk remedies. In: Engel JJ, Pedley TA (eds.). Epilepsy: A Comprehensive Textbook. Lippincott-Raven, Philadelphia, 1997, pp. 1365-1378.

2. Murphy PA. Treating Epilepsy Naturally. Keats, Chicago, 2002.

3. Blusztajn JK. Choline, a vital amine. Science 1998;281:794-795.

4. Meck WH, Smith RA, Williams CL. Pre- and postnatal choline supplementation produces long-term facilitation of spatial memory. Dev Psychobiol 1988;21:339-353.

5. Schenk F, Brandner C. Indirect effect of peri- and postnatal choline treatment on place-learning abilities in rat. Psychobiology 1995;35:302-313.

6. Meck WH, Williams CL. Perinatal choline supplementation increases the threshold for chunking in spatial memory. NeuroReport 1997;8:3053-3059.

7. Meck WH, Williams CL. Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. NeuroReport 1997;8:2831-2835.

8. Tees RC. The influences of sex, rearing environment, and neonatal choline dietary supplementation on spatial and nonspatial learning and memory in adult rats. Dev Psychobiol 1999;35:328-342.

9. Thomas JD, La Fiette MH, Quinn VRE, Riley EP. Neonatal choline supplementation ameliorates the effects of prenatal alcohol exposure on a discrimination learning task in rats. Neurotoxicol Teratol 2000;22:703-711.

10. Fundaro A, Paschero A. Behavioural effects of chronic manipulations of dietary choline in senescent rats. Prog Neuropsychopharmacol Biol Psychiatr 1990;14:949-960.

11. Yang Y, Cermak JM, Tandon P, Sarkisian MR, Stafstrom CE, Neill JC, Blusztajn JK, Holmes GL. Protective effects of prenatal choline supplementation on seizure-induced memory impairment. J Neurosci 2000;20(RC109):1-6.

12. Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 1983;9:315-335.

13. Liu Z, Gatt A, Mikati MA, Holmes GL. Long-term behavioral deficits following pilocarpine seizures in immature rats. Epilepsy Res 1995;19:191-204.

14. Holmes GL, Yang Y, Liu Z, Cermak JM, Sarkisian MR, Stafstrom CE, Neill JC, Blusztajn JK. Seizure-induced memory impairment is reduced by choline supplementation before or after status epilepticus. Epilepsy Res 2002;48:3-13.

15. Nadler JV. Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 1981;29:2031-2042.

16. Stafstrom CE, Thompson JL, Holmes GL. Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Dev Brain Res 1992;65:227-236.

17. Stafstrom CE, Chronopoulos A, Thurber S, Thompson JL, Holmes GL. Age-dependent cognitive and behavioral deficits after kainic acid seizures. Epilepsia 1993;34:420-435.

18. Cermak JM, Holler T, Jackson DA, Blusztajn JK. Prenatal availability of choline modifies development of the hippocampal cholinergic system. FASEB 1998;12:349-357.

19. Cermak JM, Blusztajn JK, Meck WH, Williams CL, Fitzgerald CM, Rosene DL, Loy R. Prenatal availability of choline alters the development of acetylcholinesterase in rat hippocampus. Dev Neurosci 1999;21:84-104.

20. Ikarashi Y, Kuribara H, Shiobara T, Takahashi A, Ishimaru H, Maruyama Y. Learning and memory in mice treated with choline oxidase, a hydrolytic enzyme for choline. Pharmacol Biochem Behav 2000;65:519-522.

21. Semba K, Fibiger HC, Organization of central cholinergic systems. Prog Brain Res 1989;79:37-63.

22. Albright CD, Tsai AY, Friedrich CB, Mar MH, Zeisel SH. Choline availability alters embryonic development of the hippocampus and septum in the rat. Dev Brain Res 1999;113:13-20.

23. Fibiger HC. Cholinergic mechanisms in learning, memory, and dementia: a review of the evidence. Trends Neurosci 1991;14:220-223.

24. Jones DNC, Barnes JC, Kirkby DL, Higgins GA. Age-associated impairments in a test of attention: evidence for involvement of cholinergic systems. J Neurosci 1995;15:7282-7292.

25. Loy R, Heyer D, Williams CL, Meck WH. Choline-induced spatial memory facilitation correlates with altered distribution and morphology of septal neurons. Adv Exp Med Biol 1991;295:373-382.

26. Williams CL, Meck WH, Heyer D, Loy R. Hypertrophy of basal forebrain neurons and enhanced visuospatial memory in perinatally choline-supplemented rats. Brain Res 1998;794:225-238.

27. Montoya D, Swartzwelder HS. Prenatal choline supplementation alters hippocampal N-methyl-D-aspartate receptor-mediated neurotransmission in adult rats. Neurosci Lett 2000;296:85-88.

28. Guo-Ross SX, Jones KH, Shetty AK, Wilson WA, Swartzwelder HS. Prenatal dietary choline availability alters postnatal neurotoxic vulnerability in the adult rat. Neurosci Lett 2003;341:161-163.

29. Jones JP, Meck WH, Williams CL, Wilson WA, Swartzwelder HS. Choline availability to the developing rat fetus alters adult hippocampal long-term potentiation. Dev Brain Res 1999;118:159-167.

30. Kurlak L, Stephenson T. Plausible explanations for effects of long chain polyunsaturated fatty acids (LCPUFA) on neonates. Arch Dis Child (Fetal Neonat Ed) 1999;80:F148-F154.

31. Innis SM. The role of dietary n-6 and n-3 fatty acids in the developing brain. Dev Neurosci 2000;22:474-480.

32. Uauy R, Mena P. Lipids and neurodevelopment. Nutr Rev 2001;59(8 [Pt 2]):S34-S58.

33. Gibson R. Long-chain polyunsaturated fatty acids and infant development. Lancet 1999;354:1919-1920.

34. Neuringer M, Anderson G, Connor W. The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annu Rev Nutr 1988;8:517-541.

35. Carlson SE, Werkman SH. A randomized trial of visual attention of preterm infants fed docosa-hexaenoic acid until nine months. Lipids 1996;31:91-97.

36. Enslen M, Milon H, Malnoe A. Effect of low intake of n-3 fatty acids during development on brain phospholipid fatty acid composition and exploratory behavior in rats. Lipids 1991;26:203-208.

37. Carrie I, Clement I, Clement M, De Javel D, Frances H, Bourre JM. Learning deficits in first generation OF1 mice deficient in (n-3) polyunsaturated fatty acids do not result from visual alteration. Neu-rosci Lett 1999;266:69-72.

38. McGahon B, Martin DSD, Horrobin DF, Lynch MA. Age-related changes in synaptic function: analysis of the effect of dietary supplementation with ro-3 fatty acids. Neurosci 1999;94:305-314.

39. Yehuda S, Rabinovitz S, Mostofsky DI. Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res 1999;56:565-570.

40. Takeuchi T, Fukumoto Y, Harada E. Influence of a dietary n-3 fatty acid deficiency on the cerebral catecholamine contents, EEG and learning ability in rat. Behav Brain Res 2002;131:193-203.

41. Crawford M. The role of essential fatty acids in neural development: implications for perinatal nutrition. Am J Clin Nutr 1993;57 (Suppl):703S-710S.

42. Raiten D, Talbot D, Waters J. Assessment of nutrient requirements for infant formulas. Am J Clin Nutr 1998;115:2089-2110.

43. Lucas A, Stafford M, Morley R, Abbott R, Stephenson T, MacFadyen U, Elias-Jones A, Clements H. Efficacy and safety of long-chain polyunsaturated fatty acid supplementation of infant-formula milk: a randomised trial. Lancet 1999;354:1948-1954.

44. Salvati S, Attorri L, Avellino C, DiBiase A, Sanchez M. Diet, lipids and brain development. Dev Neurosci 2000;22:481-487.

45. Yavin E, Glozman S, Green P. Docosahexaenoic acid sources for the developing brain during intrauterine life. Nutr Health 2001;15:219-224.

46. Ahmad A, Moriguchi T, Salem N Jr. Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr Neurol 2002;26:210-218.

47. Haubner LY, Stockard JE, Saste MD, Benford VJ, Phelps CP, Chen LT, Barness L, Weiner D, Carver JD. Maternal dietary docosahexanoic acid content affects the rat pup auditory system. Brain Res Bull 2002;58:1-5.

48. Fewtrell MS, R. Morley R, Abbott RA, Singhal A, Isaacs EB, Stephenson T, MacFadyen U, Lucas A. Double-blind, randomized trial of long-chain polyunsaturated fatty acid supplementation in formula fed to preterm infants. Pediatrics 2002;110 (1 Pt 1):72-83.

49. Ordway RW, Singer JJ, Walsh JV Jr. Direct regulation of ion channels by fatty acids. Trends Neurosci 1991;14:96-100.

50. Hwang D, Rhee SH. Receptor-mediated signaling pathways: potential targets of modulation by dietary fatty acids. Am J Clin Nutr 1999;70:545-556.

51. Kang JX, Xiao Y-F, Leaf A. Free, long-chain, polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. Proc Natl Acad Sci U S A 1995;92:3997-4001.

52. Leaf A, Kang JX, Xiao Y-F, Billman GE, Voskuyl RA. The antiarrhythmic and anticonvulsant effects of dietary n-3 fatty acids. J Membr Biol 1999;172:1-11.

53. Meves H. Modulation of ion channels by arachidonic acid. Prog Neurobiol 1994;43:175-186.

54. Bazan N, Packard MG, Teather L, Allan G. Bioactive lipids in excitatory neurotransmission and neuronal plasticity. Neurochem Int 1996;2:225-231.

55. Leaf A, Kang JX, Xiao Y-F, Billman GE, Voskuyl RA. Functional and electrophysiologic effects of polyunsaturated fatty acids on excitable tissues: heart and brain. Prostaglandins Leukotrienes Essent Fatty Acids 1999;60:307-312.

56. Vreugdenhil M, Bruehl C, Voskuyl RA, Kang JX, Leaf A, Wadman WJ. Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proc Natl Acad Sci U S A 1996;93:12559-12563.

57. Poling J, Vicini S, Rogawski MA, Salem N Jr. Docosahexaenoic acid block of neuronal voltage-gated K+ channels: subunit selective antagonism by zinc. Neuropharmacology 1996;35:969-982.

58. Keros S, McBain C. Arachadonic acid inhibits transient potassium currents and broadens action potentials during electrographic seizures in hippocampal pyramidal and inhibitory interneurons. J Neurosci 1997;17:3476-3487.

59. Horimoto N, Nabekura J, Ogawa T. Arachadonic acid activation of potassium channels in rat visual cortex neurons. Neuroscience 1997;77:661-671.

60. Nishikawa M, Kimura S, Akaike N. Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspar-tate response in pyramidal neurons of rat cerebral cortex. J Physiol (Lond) 1994;475:83-93.

61. Hamano H, Nabekura J, Nishikawa M, Ogawa T. Docosahexanoic acid reduces GABA response in substantia nigra neuron of rat. J Neurophysiol 1996;75:1264-1270.

62. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M. Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 2000;19:1784-1793.

63. Voskuyl RA. Is marine fat anti-epileptogenic? Nutr Health 2002;16:51-53.

64. Lesage F. Pharmacology of neuronal background potassium channels. Neuropharmacology 2003;44:1-7.

65. Talley EM, Sirois JE, Lei Q, Bayliss DA. Two-pore domain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist 2003;9:46-56.

66. Fraser DD, Hoehn K, Weiss S, MacVicar BA. Arachidonic acid inhibits sodium currents and synaptic transmission in cultured striatal neurons. Neuron 1993;11:633-644.

67. Rho JM, Sankar R. The pharmacologic basis of antiepileptic drug action. Epilepsia 1999;40:1471-1483.

68. Woods BT, Chiu T-M. Fatty acid elevation and brain seizure activity [letter]. Trends Neurosci 1991;14:405.

69. Stafstrom CE. Effects of fatty acids and ketones on neuronal excitability: implications for epilepsy and its treatment. In: Mostofsky DI, Yehuda S, Salem N Jr. (eds.). Fatty Acids—Physiological and Behavioral Functions. Humana, Totowa, NJ, 2001, pp. 273-290.

70. Young C, Gean P-W, Chiou L-C, Shen Y-Z. Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 2000;37:90-94.

71. Xiao Y-F, Li X. Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res 1999;846:112-121.

72. Valencia P, Carver JD, Wyble LE, Benford VJ, Gilbert-Barness E, Weiner DA, Phelps C. The fatty acid composition of maternal diet affects the response to excitotoxic neural injury in neonatal rat pups. Brain Res Bull 1998;45:637-640.

73. Yehuda S, Carasso RL, Mostofsky DI. Essential fatty acid preparation (SR-3) raises the seizure threshold in rats. Eur J Pharmacol 1994;254:193-198.

74. Voskuyl RA, Vreugdenhil M, Kang JX, Leaf A. Anticonvulsant effect of polyunsaturated fatty acids in rats, using the cortical stimulation model. Eur J Pharmacol 1998;341:145-152.

75. Voskuyl RA, Vreugdenhil M. Effects of essential fatty acids on voltage-regulated ionic channels and seizure thresholds in animals. In: Mostofsky DI, Yehuda S, Salem N Jr (eds.). Fatty Acids—Physiological and Behavioral Functions. Humana, Totowa, NJ, 2001, pp. 63-78.

76. Stafstrom CE, Sarkisian M. A diet enriched in polyunsaturated fatty acids does not protect against flurothyl seizures in the immature brain. Epilepsia 1997;38 (Suppl 8):34.

77. Cunnane SC, Musa K, Ryan MA, Whiting S, Fraser DD. Potential role of polyunsaturates in seizure protection achieved with the ketogenic diet. Prostaglandins Leukotrienes Essent Fatty Acids 2002;67:131-135.

78. Appleton DB, DeVivo DC. An animal model for the ketogenic diet. Epilepsia 1974;15:211-217.

79. Huttenlocher PR, Wilbourn AJ, Signore JM. Medium-chain triglycerides as a therapy for intractable childhood epilepsy. Neurology 1971;21:1097-1103.

80. Dekaban AS. Plasma lipids in epileptic children treated with the high fat diet. Arch Neurol 1966;15:177-184.

81. Schwartz RM, Eaton J, Bower BD, Aynsley-Green A. Ketogenic diets in the treatment of epilepsy: short term clinical effects. Dev Med Child Neurol 1989;31:145-151.

82. Alexander GJ, Kopeloff LM. Induced hypercholesterolemia and decreased susceptibility to seizures in experimental animals. Exp Neurol 1971;32:134-140.

83. Huttenlocher PR. Ketonemia and seizures: metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy. Pediatr Res 1976;10:536-540.

84. Bough KJ, Eagles DA. A ketogenic diet increases the resistance to pentylenetetrazole-induced seizures in the rat. Epilepsia 1999;40:138-143.

85. Dell CA, Likhodii SS, Musa K, Ryan MA, Burnham WM, Cunnane SC. Lipid and fatty acid profiles in rats consuming different high-fat ketogenic diets. Lipids 2001;36:373-378.

86. Bourre JM, Bonneil M, Clement M, Dumont O, Durand G, Lafont H, Nalbone G, Piciotti M. Function of dietary polyunsaturated fatty acids in the nervous system. Prostaglandins Leukotrienes Essent Fatty Acids 1993;48:5-15.

87. Jumpsen J, Lien EL, Goh YK, Clandinin MT. Small changes of dietary (n-6) and (n-3)/fatty acid content ratio alter phosphatidylethanolamine and phosphatidylcholine fatty acid composition during development of neuronal and glial cell in rats. J Nutr 1997;127:724-731.

88. Leaf A. Health claims: Omega-3 fatty acids and cardiovascular disease. Nutr Rev 1992;50:150-154.

89. Schlanger S, Shinitzky M, Yam D. Diet enriched with omega-3 fatty acids alleviates convulsion symptoms in epilepsy patients. Epilepsia 2002;43:103-104.

90. DeToledo JC, Lowe MR. Epilepsy, demonic possessions, and fasting: another look at translations of Mark 9:16. Epilepsy Behav 2003;4:338-339.

91. Ramsey JJ, Harper M-E, Weindruch R. Restriction of energy intake, energy expenditure, and aging. Free Radical Biol Med 2000;29:946-968.

92. Prolla TA, Mattson MP. Molecular mechanisms of brain aging and neurodegenerative disorders: lessons from dietary restriction. Trends Neurosci 2001;24(11) Suppl.:S21-S31.

93. Koubova J, Guarante L. How does calorie restriction work? Genes Dev 2003;17:313-321.

94. Greene AE, Todorova MT, McGowan R, Seyfried TN. Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia 2001;42:1371-1378.

95. Greene AE, Todorova MT, Seyfried TN. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem 2003;86:529-537.

96. Schwechter EM, Veliskova J, Velisek L. Correlation between extracellular glucose and seizure susceptibility in adult rats. Ann Neurol 2003;53:91-101.

97. Marinella MA. Generalized seizures associated with low-calorie dieting. Ann Emerg Med 2000;35:405.

98. Kaufman MA, Bhargava A. Dietary weight reduction and seizures. Neurology 1990;40:1905-1906.

99. Mattson MP, Duan W, Lee J, Guo Z. Suppression of brain aging and neurodegenerative disorders by dietary restriction and environmental enrichment: molecular mechanisms. Mech Ageing Dev 2001;122:757-778.

100. Bruce-Keller A., Umberger G, McFall R, Mattson MP. Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Neurology 1999;45:8-15.

101. Wu A, Sun X, Liu Y. Effects of caloric restriction on cognition and behavior in developing mice. Neurosci Lett 2003;339:166-168.

102. Nunes ML, Teixeira GC, Fabris I, Gongalves RA. Evaluation of the nutritional status in institutionalized children and its relationship to the development of epilepsy. Nutr Neurosci 1999;2:139-145.

103. DeBassio WA, Kemper TL, Tonkiss J, Galler JR. Effect of prenatal protein deprivation on postnatal granule cell generation in the hippocampal dentate gyrus. Brain Res Bull 1996;41:379-383.

104. Fukuda MTH, Francolin-Silva AL, Sebastiao SS. Early postnatal protein malnutrition affects learning and memory in the distal but not the proximal cue version of the Morris water maze. Behav Brain Res 2002;133:271-277.

105. Morgane PJ, Mokler DJ, Galler JR. Effects of prenatal protein malnutrition on the hippocampal formation. Neurosci Biobehav Rev 2002;26:471-483.

106. Bronzino JD, Austin-LaFrance RJ, Morgane PJ, Galler JR. Effects of prenatal protein malnutrition on kindling-induced alterations in dentate granule cell excitability: I. Synaptic transmission measures. Exp Neurol 1991;112:206-215.

107. Sharma SK, Selvamurthy W, Maheshwari MC, Singh TP. Kainic acid induced epileptogenesis in developing normal and undernourished rats—a computerized EEG analysis. Indian J Med Res (B) 1990;92:456-466.

108. Nunes ML, Liptakova S, Veliskova J, Sperber E, Moshe S. Malnutrition increases dentate granule cell proliferation in immature rats following status epilepticus. Epilepsia 2000;41 (Suppl 6):S48-S52.

109. Hackett R, Iype T. Malnutrition and childhood epilepsy in developing countries. Seizure 2001;10:554-558.

110. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 2000;130:1007S-1015S.

111. Chapman AG. Glutamate and epilepsy. J Nutr 2000;130:1043S-1045S.

112. Shovic A, Bart RD, Stalcup AM. "We think your son has Lennox-Gastaut syndrome"—a case study of monosodium glutamate's possible effect on a child. J Am Diet Assoc 1997;97:793-794.

113. Dzhala V, Desfreres L, Melyan Z, Ben-Ari Y, Khazipov R. Epileptogenic action of caffeine during anoxia in the neonatal rat hippocampus. Ann Neurol 1999;46:95-102.

114. Zagnoni PG, Albano C. Psychostimulants and epilepsy. Epilepsia 2002;43 (Suppl 2):28-31.

115. Gordon E, Devinsky O. Alcohol and marijuana: effects on epilepsy and use by patients with epilepsy. Epilepsia 2001;42:1266-1272.

116. Huang Z, Xiao B, Wang X, Li Y, Deng H. Betel nut indulgence as a cause of epilepsy. Seizure 2003;12:406-408.

117. Spinella M. Herbal medicines and epilepsy: the potential for benefit and adverse effects. Epilepsy Behav 2001;2:524-532.

Basic Science Perspectives

Drop Fat The Low Carb Way

Drop Fat The Low Carb Way

Sick Of Going Round In Circles With Your Dieting? You're About To Discover The Easiest Way To Drop The Fat Once And For All, And Start Living The Life You've Always Dreamed Of This book is one of the most valuable resources when looking at starting a low carb die.

Get My Free Ebook

Post a comment