References

1. Prasad AN, Stafstrom CE, Holmes GL. Alternative epilepsy therapies: the ketogenic diet, immunoglobulins, and steroids. Epilepsia 1996;37 (Suppl 2): S81-S95.

2. Vining EPG, Freeman JM, Ballaban-Gil K, Camfield CS, Camfield PR, Holmes GL, Shinnar S, Shu-man R, Trevathan E, Wheless JW. A multicenter study of the efficacy of the ketogenic diet. Arch Neurol 1998;55:1433-1437.

3. Huttenlocher PR, Wilbourne AJ, Signore JM. Medium-chain triglycerides as a therapy for intractable childhood epilepsy. Neurology 1971;21:1097-1103.

4. Appleton DB, DeVivo DC. An animal model for the ketogenic diet. Epilepsia 1974;15:211-227.

5. Huttenlocher PR. Ketonemia and seizures: metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy. Pediatr Res 1976;10:536-540.

6. Hank SI, Al-Mudallal AS, LaManna JC, Lust WD, Levin BE. Ketogenic diet and the brain. Ann N Y Acad Sci 1997;835:218-224.

7. Thio LL, Wong M, Yamada KA. Ketone bodies do not directly alter excitatory or inhibitory hip-pocampal synaptic transmission. Neurology 2000;54:325-331.

8. Cooper JR, Bloom FE, Roth RH. Norepinephrine and epinephrine. In: The Biochemical Basis of Neuropharmacology. Oxford University Press, New York, 2003, pp. 181-233.

9. Curran T, Morgan JI. Fos: an immediate-early transcription factor in neurons. J Neurobiol 1995;26:403-412.

10. Eells JB, Clough RW, Browning RA, Jobe PC. Fos in locus coeruleus neurons following audiogenic seizure in the genetically epilepsy-prone rat: comparison to electroshock and pentylenetetrazol seizure models. Neurosci Lett 1997;233:21-24.

11. Szot P, White SS, Veith RC. Effect of pentylenetetrazol on the expression of tyrosine hydroxylase mRNA and norepinephrine and dopamine transporter mRNA. Mol Brain Res 1997;44:46-54.

12. Szot P, White SS, McCarthy EB, Turella A, Rejniak SX, Schwartzkroin PA. Behavioral and metabolic features of repetitive seizures in immature and mature rats. Epilepsy Res 2001;46:191-203.

13. Silveira DC, Liu Z, de LaCalle S, Lu J, Klein P Holmes GL, Herzog AG. Activation of the locus coeruleus after amygdala kindling. Epilepsia 1998;39:1261-1264.

14. Silveira DC, Liu Z, Holmes GL, Schomer DL, Schachter SC. Seizures in rats treated with kainic acid induced Fos-like immunoreactivity in locus coeruleus. Neuroreport 1998;9:1353-1357.

15. Silveira DC, Schachter SC, Schomer DL, Holmes GL. Flurothyl-induced seizures in rats activate Fos in brain stem catecholaminergic neurons. Epilepsy Res 2000;39:1-12.

16. Willoughby JO, Mackenzie L. Picrotoxin-, kainic acid- and seizure-induced Fos in brainstem, with special reference to catecholamine cell groups. Neurosci Res 1999;33:163-169.

17. Storey TW, Rho JM, White SS, Sankar R, Szot P. Age-dependent differences in flurothyl-induced c-fos and c-jun mRNA expression in the mouse brain. Dev Neurosci 2002;24:294-299.

18. El Hamdi G, Boutroy MJ, Nehlig A. Effects of pentylenetetrazol-induced seizures on dopamine and norepinephrine levels and on glucose utilization in various brain regions of the developing rat. Int J Dev Neurosci 1992;10:301-311.

19. Kokaia M, Kalen P, Bengzon J, Lindvall O. Noradrenaline and 5-hydroxytryptamine release in the hippocampus during seizures induced by hippocampal kindling stimulation: an in vivo microdialysis study. Neuroscience 1989;32:647-656.

20. Bengzon J, Kokaia M, Brundin P, Lindvall O. Seizure suppression in kindling epilepsy by intrahip-pocampal locus coeruleus grafts: evidence for an alpha-2-adrenoreceptor mediated mechanism. Exp Brain Res 1990;81:433-437.

21. Bengzon J, Hansson SR, Hoffman BJ, Lindvall O. Regulation of norepinephrine transporter and tyrosine hydroxylase mRNAs after kainic acid-induced seizures. Brain Res 1999;842:239-242.

22. Lewis J, Westerberg V, Corcoran ME. Monoaminergic correlates of kindling. Brain Res 1987;403:205-212.

23. Callaghan DA, Schwark WS. Involvement of catecholamines in kindled amygdaloid convulsions in the rat. Neuropharmacol 1979;18:541-545.

24. Calderini G, Carlsson A, Nordstrom C-H. Monoamine metabolism during bicuculline-induced epileptic seizures in the rat. Brain Res 1978;157:295-302.

25. Nelson MF, Zaczek R, Coyle JT. Effects of sustained seizures produced by intrahippocampal injection of kainic acid on noradrenergic neurons: evidence for local control of norepinephrine release. J Pharmacol Exp Ther 1980;214:694-702.

26. El-Etri MM, Nickell WT, Ennis M, Skau KA, Shipley MT. Brain norepinephrine reductions in soman-intoxicated rats: association with convulsions and AChE inhibition, time course, and relation to other monoamines. Exp Neurol 1992;118:153-163.

27. El-Etri MM, Ennis M, Jiang M, Shipley MT. Pilocarpine-induced convulsions in rats: evidence for muscarinic receptor-mediated activation of locus coeruleus and norepinephrine release in cholinolytic seizure development. Exp Neurol 1993;121:24-39.

28. Cavalheiro EA, Fernandes MJ, Turski L, Naffah-Mazzacoratti MG. Spontaneous recurrent seizures in rats: amino acid and monoamine determination in the hippocampus. Epilepsia 1994;35:1-11.

29. Arnold PS, Racine RJ, Wise RS. Effects of atropine, reserpine, 6-hydroxydopamine and handling on seizure development in the rat. Exp Neurol 1973;40:457-470.

30. Jerlicz M, Kostowski W, Bidzinski A, Hauptman M, Dymecki J. Audiogenic seizures in rats: relation to noradrenergic neurons of the locus coeruleus. Acta Physiol Polonica 1978;29:409-412.

31. Mason ST, Corcoran ME. Catecholamines and convulsions. Brain Res 1979;170:497-507.

32. Trottier S, Lindvall O, Chauvel P, Bjorklund A. Facilitation of focal colbalt-induced epilepsy after lesions of the noradrenergic locus coeruleus system. Brain Res 1988;454:308-314.

33. Sullivan HC, Osorio I. Aggravation of penicillin-induced epilepsy in rats with locus coeruleus lesion. Epilepsia 1991;32:591-596.

34. Thomas SA, Marck BT, Palmiter RD, Matsumoto AM. Restoration of norepinephrine and reversal of phenotypes in mice lacking dopamine ß-hydroxylase. J Neurochem 1998;70:2468-2476.

35. Weinshenker D, Szot P, Miller NS, Rust NC, Hohmann JG, Pyati U, White SS, Palmiter RD. Genetic comparison of seizure control by norepinephrine and neuropeptide Y. J Neurosci 2001;21:7764-7769.

36. Szot P, Weinshenker D, White SS, Robbins CA, Rust NC, Schwartzkroin PA, Palmiter RD. Norepi-nephrine-deficient mice have increased susceptibility to seizure-inducing stimuli. J Neurosci 1999;19:10985-10992.

37. Jobe PC, Ko KH, Dailey JW. Abnormalities in norepinephrine turnover rate in the central nervous system of the genetically epilepsy-prone rat. Brain Res 1984;290:357-360.

38. Dailey JW, Jobe PC. Indices of noradrenergic function in the central nervous system of genetically epilepsy-prone rats. Epilepsia 1986;27:665-670.

39. Browning RA, Wade DR, Marcinczyk M, Long GL, Jobe PC. Regional brain abnormalities in norepinephrine uptake and dopamine P-hydroxylase activity in the genetically epilepsy-prone rat. J Pharmacol Exp Ther 1989;249:229-235.

40. Lauterborn JC, Ribak CR. Differences in dopamine beta-hydroxylase immunoreactivity between the brains of genetically epilepsy-prone and Sprague-Dawley rats. Epilepsy Res 1989;4:161-176.

41. Dailey JW, Mishra PK, Ko KH, Penny JE, Jobe PC. Noradrenergic abnormalities in the central nervous system of seizure-naive rats. Epilepsia 1991;32:168-173.

42. Mishra PT, Kahle EH, Bettendorf AF, Dailey JW, Jobe PC. Anticonvulsant effects of intracerebroven-tricularly administered norepinephrine are potentiated in the presence of monoamine oxidase inhibition in severe seizure genetically epilepsy-prone rats (GEPRs). Life Sci 1993;52:1435-1441.

43. Yan QS, Jobe PC, Dailey JW. Thalamic deficiency in norepinephrine release detected via intracere-bral microdialysis: a synaptic determinant of seizure predisposition in the genetically epilepsy-prone rat. Epilepsy Res 1993;14:229-236.

44. Yan QS, Dailey JW, Steenbergen JL Jobe PC. Anticonvulsant effect of enhancement of noradrenergic transmission in the superior colliculus in genetically epilepsy-prone rats (GEPRs): a micro-injection study. Brain Res 1998;780:199-209.

45. Chermat R, Doare L, Lachapelle F, Simon P. Effects of drugs affecting the noradrenergic system on convulsions in the quaking mouse. Naunyn Schmiedebergs Arch Pharmacol 1981;318:94-99.

46. Loscher W. Influence of pharmacological manipulation of inhibitory and excitatory neurotransmitter systems on seizure behavior in the Mongolian gerbil. J Pharmacol Exp Therap 1985;233:204-213.

47. Loscher W, Czuczwar SJ. Comparison of drugs with different selectivity for central alpha 1- and alpha 2-adrenoreceptors in animal models of epilepsy. Epilepsy Res 1987;1:165-172.

48. Tsuda H, Ito M, Oguro K, Mutoh K, Shiraishi H, Shirasaka Y, Mikawa H. Involvement of the noradrenergic system in the seizures of epileptic EL mouse. Eur J Pharmacol 1990;176:321-330.

49. Tsuda H, Ito M, Oguro K, Mutoh K, Shiraishi H, Shirasaka Y, Mikawa H. Age- and seizure-related changes in noradrenaline and dopamine in several brain regions of epileptic EL mouse. Neurochem Res 1993;18:111-117.

50. Trottier S, Berger B, Chauvel P, Dedek J, Gay M. Alterations of the cortical noradrenergic system in chronic cobalt epileptogenic foci in the rat: a histofluorescence and biochemical study. Neuroscience 1981;6:1069-1080.

51. Vezzani A, Schwarcz R. A noradrenergic component of quinolonic acid-induced seizures. Exp Neurol 1985;90:254-258.

52. Noebels JL. A single gene error of noradrenergic axon growth synchronizes central neurons. Nature 1984;310:409-411.

53. Libet B, Gleason CA, Wright EW, Feinstein B. Suppression of an epileptiform type of electrocortical activity in the rat by stimulation of the locus coeruleus. Epilepsia 1977;18:451-462.

54. Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro ES. Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 1989;3:154-171.

55. Weiss GK, Lewis J, Corcoran ME. Antikindling effect of LC stimulation: mediation by ascending noradrenergic projections. Exp Neurol 1990;108:136-140.

56. Hajos-Korcsok E, McTavish SFB, Sharp T. Effect of a selective 5-hydroxytryptamine reuptake inhibitor on brain extracellular noradrenaline: microdialysis studies using paraxetine. Eur J Pharmacol 2000;407:101-107.

57. Sakakihara Y, Oka A, Kubota M, Ohashi Y. Reduction of seizure frequency with clomipramine in patients with complex partial seizures. Brain Dev 1995;17:291-293.

58. Dailey JW, Naritoku DK. Antidepressants and seizures: clinical anecdotes overshadow neuroscience. Biochem Pharmacol 1996;52:1323-1329.

59. Krijzer F, Snelder M, Bradford D. Comparison of the (pro)-convulsive properties of fluvoxamine and clovoxamine with eight other antidepressants in an animal model. Neuropsychobiology 1984;12:249-254.

60. Clifford DB, Rutherford JL, Hicks FG, Zorumski CF. Acute effects of antidepressants on hippocam-pal seizures. Ann Neurol 1985;18:692-697.

61. Peterson SL, Trzeciakowski JP, St Mary JS. Chronic but not acute treatment with antidepressants enhances the electroconvulsive seizure response in rats. Neuropharmacology 1985;24:941-946.

62. Applegate CD, Flashman LA, Burchfiel JL. The effects of chronic desmethylimipramine on entirhi-nal cortical kindling in rats. Brain Res 1986;398:121-127.

63. Kleinrok Z, Gustaw J, Czuczwar SJ. Influence of antidepressant drugs on seizure susceptibility and the anticonvulsant activity of valproate in mice. J Neural Transm Suppl 1991;34:85-90.

64. Yacobi R, Burnham WM. The effect of tricyclic antidepressants on cortex- and amygdala-kindled seizures in the rat. Can J Neurol Sci 1991;18:132-136.

65. Kaminiski R, Shippenburg TS, Witkin JM, Caron MG, Rocha BA. Norepineprhine transporter-deficient mice are less vulnerable to seizures induced by chemoconvulsants. Soc Neurosci Abstr 2002;28:792.2.

66. Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW, Wang Y-M, Caron MG. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci 2000;3:465-471.

67. Hassert DL, Miyaswhita T, Williams CL. Alterations in basolateral amygdala norepinephrine after vagal stimulation at a memory modulating intensity. Soc Neurosci Abstr 2002;28:379.10.

68. Miyashita T, Hassert DL, Williams CL. Does peripheral physiological arousal affect the capacity for norepinephrine to modulate memory in the hippocampus. Soc Neurosci Abstr 2002;28:379.11.

69. Nishi H, Watanabe S, Ueki S. Effect of monoamines injected into the hippocampus on hippocampal seizure discharges in the rabbit. J Pharmacobiodyn 1981;4:7-14.

70. Segal M. The action of norepinephrine in the rat hippocampus: intracellular studies in the slice preparation. Brain Res 1981;206:107-128.

71. Szabadi E. Adrenoceptors on central neurons: microelectrophoretic studies. Neuropharmacology 1979;18:831-843.

72. Waterhouse BD. Electrophysiological assessment of monoamine synaptic function in neuronal circuits of seizure susceptible brains. Life Sci 1986;39:807-818.

73. Stanton, PK. Noradrenergic modulation of epileptiform bursting and synaptic plasticity in the dentate gyrus. Epilepsy Res Suppl 1992;7:135-150.

74. Curet O, deMontigny C. Electrophysiological characterization of adrenoreceptors in the rat dorsal hippocampus: I. Receptors mediating the effect of microiontophoretically applied norepinephrine. Brain Res 1988;475:35-46.

75. Licata F, Li-Volsi G, Maugeri G, Ciranna L, Santangelo F. Effects of noradrenaline on the firing rate of vestibular neurons. Neuroscience 1993;53:149-158.

76. Weinshenker D, Szot P. The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacol Ther 2002;94:213-233.

77. Bucheler MM, Hadamek K, Hein L. Two a2-adrenergic receptor subtypes, a2A and a2C, inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 2002;109:819-826.

78. Van Gaalen M, Kawahara H, Kawahara Y, Westerink BHC. The locus coeruleus noradrenergic system in the rat brain studied by dual-probe microdialysis. Brain Res 1997;763:56-62.

79. Kawahara Y, Kawahara H, Westernik BHC. Tonic regulation of the activity of noradrenergic neurons in the locus coeruleus of the conscious rat studies by dual-probe microdialysis. Brain Res 1999;823:42-48.

80. Avery RA, Franowicz JS, Studholme C, van Dyke CH, Arnsten AFT. The alpha-2A-adrenergic agonist, guanfacine, increases regional cerebral blood flow in dorsolateral prefrontal cortex of monkeys performing a spatial working memory task. Neuropsychopharmacology 2000;23:240-249.

81. Birnbaum SG, Podell DM, Arnsten AFT. Noradrenergic alpha-2 receptor agonists reverse working memory deficits induced by the anxiogenic drug, FG7142, in rats. Pharmacol Biochem Behav 2000;67:397-403.

82. Fischer W, Muller M. Pharmacological modulation of central monoaminergic systems and influence on the anticonvulsive effectiveness of standard antiepileptics in maximal electroshock seizure. Bio-med Biochim Acta 1988;47:631-645.

83. De Sarro G, Gareri P, Falconi O, De Sarro A. 7-Nitroindazole potentiates the antiseizure activity of some anticonvulsants in DBA/2 mice. Eur J Pharmacol 2000;394:275-288.

84. Quattrone A, Samanin R. Decreased anticonvulsant activity of carbamazepine in 6-hydroxy-dopamine-treated rats. Eur J Pharmacol 1977;41:333-336.

85. Crunelli V, Cervo L, Samanin R. Evidence for a preferential role of central noradrenergic neurons in electrically induced convulsions and activity of various anticonvulsants in the rat. In: Morselli PL, Lloyd KG, Loscher W, Meldrum B, Reynolds EH (eds.). Neurotransmitters, Seizures, and Epilepsy. Raven, New York, 1981, pp. 195-202.

86. Waller SB, Buterbaugh GG. Convulsive thresholds and severity and the anticonvulsant effect of phenobarbital and phenytoin in adult rats administered 6-hydroxydopamine or 5,7-dihydroxytryptamine during postnatal development. Pharmacol Biochem Behav 1985;23:473-478.

87. Krahl SE, Clark KB, Smith DC, Browning RA. Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 1998;39:709-714.

88. Szot P, Weinshenker D, Rho JM, Storey TW, Schwartzkroin PA. Norepinephrine is required for the anticonvulsant effect of the ketogenic diet. Dev Brain Res 2001;129:211-214.

89. Baf MH, Subhash NM, Lakshmane KM, Roa BS. Alterations in monoamine levels in discrete regions of rat brain after chronic administration of carbamazepine. Neurochem Res 1994;19:1139-1143.

90. Baf MH, Subhash NM, Lakshmane KM, Roa BS. Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem Int 1994;24:67-72.

91. Meshkibaf MH, Subhash MN, Lakshmana KM, Roa BS. Effect of chronic administration of phenytoin on regional monoamine levels in rat brain. Neurochem Res 1995;20:773-778.

92. Waldmeier PA, Baumann B, Fehr P, De Herdt L, Maitre L. Carbamazepine decreases catecholamine turnover in the rat brain. J Pharmacol Exp Ther 1984;231:166-172.

93. Olpe HR, Jones RS. The action of anticonvulsant drugs on the firing of locus coeruleus neurons: selective activating effect of carbamazepine. Eur J Pharmacol 1983;91:107-110.

94. Sands SA, Guerra V, Morilak J. Changes in tyrosine hydroxylase mRNA expression in the rat locus coeruleus following acute or chronic treatment with valproic acid. Neuropsychopharmacology 2000;22:27-35.

95. Southam E, Kirkby D, Higgins GA, Hagan RM. Lamotrigine inhibits monoamine uptake in vitro and modulates 5-hydroxytryptamine uptake in rats. Eur J Pharmacol 1998;358:19-24.

96. Gieroba ZJ, Blessing WW. Fos-containing neurons in medulla and pons after unilateral stimulation of the afferent abdominal vagus in conscious rabbits. Neurosci 1994;59:851-858.

97. Naritoku DK, Terry WJ, Helfert RH. Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. Epilepsy Res 1995;22:53-62.

98. Elger G, Hoppe C, Falkai P, Rush AJ, Elger CE. Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res 2000;42:203-210.

99. Sackeim HA, Rush AJ, George MS, Marangell LB, Husain MM, Nahas Z, Johnson CR, Seidman S, Giller C, Haines S, Simpson RK, Goodman RR. Vagus nerve stimulation (VNS) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology 2001;25:713-728.

100. Da Prada M, Zurcher G. Simultaneous radioenzymatic determination of plasma and tissue adrenaline, noradrenaline and dopamine within femtomolar range. Life Sci 1976;19:1161-1174.

101. Saller CF, Zigmond MJ. A radioenzymatic assay for catecholamines and dihydrophenylacetic acid. Life Sci 1978;23:1117-1150.

102. Webber RC, MacDonald IA. The cardiovascular, metabolic and hormonal changes accompanying acute starvation in men and women. Br J Nutr 1994;71:437-447.

103. El Fazza S, Somody L, Gharbi N, Kamoun A, Gharib C, Gauquelin-Koch G. Effects of acute and chronic starvation on central and peripheral noradrenaline turnover, blood pressure and heart rate in the rat. Exp Physiol 1999;84:357-368.

104. Wiggens RC, Fuller GN, Seifert WE, Butler IJ, Gottesfeld Z. Catecholamines in rat brain following postnatal undernutrition and nutritional rehabilitation. J Neurosci Res 1982;8:651-656.

105. Jahng JW, Houpt TA, Joh TH, Son JH. Differential expression of monoamine oxidase A, serotonin transporter, tyrosine hydroxylase and norepinephrine transporter mRNA by anorexia mutation and food deprivation. Dev Brain Res 1998;107:241-246.

106. Weinshenker D, Szot P. The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacol Ther 2002;94:213-233.

Drop Fat The Low Carb Way

Drop Fat The Low Carb Way

Sick Of Going Round In Circles With Your Dieting? You're About To Discover The Easiest Way To Drop The Fat Once And For All, And Start Living The Life You've Always Dreamed Of This book is one of the most valuable resources when looking at starting a low carb die.

Get My Free Ebook


Post a comment