Acknowledgements

Dr. Jonathan Javitch and Lei Shi are thanked for providing the molecular model shown in Fig. 3.4 and Dr. Juan Ballesteros is thanked for providing the models shown in Fig. 3.3.

References

Alewijnse AE, Timmerman H, Jacobs EH et al. (2000). The effect of mutations in the DRY motif on the constitutive activity and structural instability of the histamine H(2) receptor. Mol Pharmacol 57, 890-8.

Allen LF, Lefkowitz RJ, Caron MG, and Cotecchia S (1991). G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci USA 88, 11 354-8. Altenbach C, Cai K, Khorana HG, and Hubbell WL (1999a). Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study. Biochemistry 38, 7931-7. Altenbach C, Klein-Seetharaman J, Hwa J, Khorana HG, and Hubbell WL (1999 b). Structural features and light-dependent changes in the sequence 59-75 connecting helices I and II in rhodopsin: a site-directed spin-labeling study. Biochemistry 38, 7945-9.

Altenbach C, Cai K, Klein-Seetharaman J, Khorana HG, and Hubbell, WL (2001a). Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306-319 at the cytoplasmic end of helix TM7 and in helix H8. Biochemistry 40, 15 483-92.

Altenbach C, Klein-Seetharaman J, Cai K, Khorana HG, and Hubbell WL (2001b). Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60-75, covering the cytoplasmic end of helices TM1 andTM2 and their connection loop CL1. Biochemistry 40, 15 493-500.

Altenbach C, Yang K, Farrens DL, Farahbakhsh ZT, Khorana HG, and Hubbell WL (1996). Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry 35, 12 470-8.

Angers S, Salahpour A, Joly E et al. (2000). Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 97, 3684-9.

Arnis S, Fahmy K, Hofimann KP, and Sakmar TP (1994). A conserved carboxylic acid group mediates light-dependent proton uptake and signalling by rhodopsin. J Biol Chem 269, 23 879-81.

Baldwin JM, Schertler GF, and Unger VM (1997). An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J Mol Biol 272, 144-64.

Ballesteros J, Kitanovic S, Guarnieri F et al. (1998). Functional microdomains in G-protein-coupled receptors. The conserved arginine-cage motifin the gonadotropin-releasing hormone receptor. JBiol Chem 273, 10 445-53.

Ballesteros JA, Jensen AD, Liapakis G et al. (2001a). Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 276, 29 171-7.

Ballesteros JA, Shi, L, and Javitch JA (2001b). Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol Pharmacol 60, 1-19.

Ballesteros JA and Weinstein H (1995). Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein coupled receptors. Meth Neurosci 25, 366-428.

Bouvier M (2001). Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2, 274-86.

Calver AR, Robbins MJ, Cosio C, Rice SQJ, Minton AL, Babb A etal. (2001). The C-terminal domain of GABAbi mediates intracellular trafficking, but is not required for receptor signalling. J Neurosci 21(4), 1203-10.

Cheng ZJ and Miller LJ (2001). Agonist-dependent dissociation of oligomeric complexes of g proteincoupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer. J Biol Chem 276, 48 040-7.

Chidiac P, Hebert TE, Valiquette M, Dennis M, and Bouvier M (1994). Inverse agonist activity of beta-adrenergic antagonists. Mol Pharmacol 45, 490-9.

Cohen GB, Yang T, Robinson PR, and Oprian DD (1993). Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry 32, 6111-15.

Costa T and Herz A (1989). Antagonists with negative intrinsic activity at delta-opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA 86, 7321-5.

Dunham TD and Farrens DL (1999). Conformational changes in rhodopsin. Movement of helix f detected by site-specific chemical labeling and fluorescence spectroscopy. J Biol Chem 274, 1683-90.

DutheyB, CaudronS, Perroy, J etal. (2001). A single subunit (GB2) is required for G protein activation by the heterodimeric GABAB receptor. J Biol Chem 15, 15.

Elling CE, Thirstrup K, Holst B, and Schwartz TW (1999). Exchange of agonist site with metal-ion chelator site in the ß2 adrenergic receptor. Proc Natl Acad Sci USA 96, 12 322-7.

Farahbakhsh ZT, Hideg K, and Hubbell WL (1993). Photoactivated conformational changes in rhodopsin: atime-resolved spin label study. Science 262, 1416-9.

Farahbakhsh ZT, Ridge KD, Khorana HG, and Hubbell WL (1995). Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study. Biochemistry 34, 8812-19.

Farrens DL, Altenbach C, Yang K, Hubbell WL, and Khorana HG (1996). Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768-70.

Garcia-Quintana D, Francesch A, Garriga P, de Lera AR, Padros E, and Manyosa J (1995). Fourier transform infrared spectroscopy indicates a major conformational rearrangement in the activation of rhodopsin. Biophys J 69, 1077-82.

Gether U (2000). Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. EndocrRev 21, 90-113.

Gether U, Ballesteros JA, Seifert R, Sanders-Bush E, Weinstein H, and Kobilka BK (1997a). Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J Biol Chem 272, 2587-90.

Gether U, Lin S, Ghanouni P, Ballesteros JA, Weinstein H, and Kobilka BK (1997b). Agonists induce conformational changes in transmembrane domains III and VI of the beta2 adrenoceptor. EMBO J 16, 6737-47.

Gether U, Lin S, and Kobilka BK (1995). Fluorescent labeling of purified beta2-adrenergic receptor: Evidence for ligand-specific conformational changes. J Biol Chem 270, 28 268-75.

Ghanouni P, Gryczynski Z, Steenhuis JJ etal. (2001a). Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor. J Biol Chem 276, 24 433-6.

Ghanouni P, Schambye H, Seifert R etal. (2000). The effect of pH on beta(2) adrenoceptor function. Evidence for protonation-dependent activation. J Biol Chem 275, 3121-7.

Ghanouni P, Steenhuis JJ, Farrens DL, and Kobilka BK (2001b). Agonist-induced conformational changes in the G-protein-coupling domain of the beta 2 adrenergic receptor. Proc Natl Acad Sci USA 98, 5997-6002.

Holst B, Elling CE, and Schwartz TW (2000). Partial agonism through a zinc-Ion switch constructed between transmembrane domains III and VII in the tachykinin NK(1) receptor. Mol Pharmacol 58, 263-70.

Hubbell WL, Cafiso DS, and Altenbach C (2000). Identifying conformational changes with site-directed spin labeling. Nat Struct Biol 7, 735-9.

Javitch JA, Shi L, and Liapakis G (2002). Use of the substituted cysteine accessibility method to study the structure and function of G protein-coupled receptors. Meth Enzymol 343, 137-56.

Jensen AD, Guarnieri F, Rasmussen SG, Asmar F, Ballesteros JA, and Gether U (2001). Agonist-induced conformational changes at the cytoplasmic side of TM6 in the {beta}2 adrenergic receptor mapped by site-selective fluorescent labeling. J Biol Chem 276, 9279-90.

Ji TH, Grossmann M, and Ji I (1998). G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J Biol Chem 273, 17 299-302.

Kjelsberg MA, Cotecchia S, Ostrowski J, Caron MG, and Lefkowitz RJ (1992). Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. J Biol Chem 267, 1430-3.

Kunishima N, Shimada Y, Tsuji Y etal. (2000). Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971-77.

Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, and Sigler PB (1996). The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379, 311-19.

Langen R, Cai K, Altenbach C, Khorana HG, and Hubbell WL (1999). Structural features of the C-terminal domain of bovine rhodopsin: a site-directed spin-labeling study. Biochemistry 38, 7918-24.

Lefkowitz RJ, Cotecchia S, Samama P, and Costa T (1993). Constitutive activity of receptors coupled to guanine nucelotide regulatory proteins. Trends Pharmacol Sci 14, 303-7.

Lin SW and Sakmar TP (1996). Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state. Biochemistry 35, 11 149-59.

LuZL, Curtis CA, Jones PG, Pavia J, and HulmeEC (1997). The role of the aspartate-arginine-tyrosine triad in the m1 muscarinic receptor: mutations of aspartate 122 and tyrosine 124 decrease receptor expression but do not abolish signalling. Mol Pharmacol 51, 234-41.

Margeta-Mitrovic M, Jan YN, and Jan LY (2001). Function of GB1 and GB2 subunits in G protein coupling of GABAB receptors. ProcNatlAcad Sci USA 98, 14649-54.

McVey M, Ramsay D, Kellett E etal. (2001). Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta-opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem 276, 14 092-9.

Palczewski K, Kumasaka T, Hori T etal. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739-45.

Peleg G, Ghanouni P, Kobilka BK, and Zare RN (2001). Single-molecule spectroscopy of the beta(2) adrenergic receptor: observation of conformational substates in a membrane protein. Proc Natl Acad Sci USA 98, 8469-74.

Rasmussen SG, Jensen AD, Liapakis G, Ghanouni P, Javitch JA, and Gether U (1999). Mutation of a highly conserved aspartic acid in the beta2 adrenergic receptor: constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. Mol Pharmacol 56, 175-18.

Robbins MJ, Calver AR, Fillipov AK, Couve A, Moss SJ, and Pangalos MN (2001). The GABAB2 subunit is essential for G protein coupling of the GABAb receptor heterodimer. J Neurosci 21: 8043-52.

Rothschild KJ, Cantore WA, and Marrero H (1983). Fourier transform infrared difference spectra of intermediates in rhodopsin bleaching. Science 219, 1333-5.

Salamon Z, Wang Y, Brown MF, Macleod HA, and Tollin G (1994). Conformational changes in rhodopsin probed by surface plasmon resonance spectroscopy. Biochemistry 33, 13 706-711.

Samama P, Cotecchia S, Costa T, and Lefkowitz RJ (1993). A mutation-induced activated state of the beta2-adrenergic receptor: Extending the ternary complex model. J Biol Chem 268, 4625-36.

Scheer A, FanelliF, Costa T, DeBenedetti PG, and Cotecchia S (1996). Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J 15, 3566-78.

Scheer A, Fanelli F, Costa T, De Benedetti PG, and Cotecchia S (1997). The activation process of the alpha1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate. ProcNatlAcad Sci USA 94, 808-13.

Schertler GF and HargravePA (1995). Projection structure of frog rhodopsin in two crystal forms. Proc Natl Acad Sci USA 92, 11578-82.

Schertler GF, Villa C, and Henderson R (1993). Projection structure of rhodopsin. Nature 362, 770-2.

Schwartz TW and Rosenkilde MM (1996). Is there a 'lock' for all agonist 'keys' in 7TM receptors? [see comments]. Trends Pharmacol Sci 17,213-16.

Seifert R, Wenzel-Seifert K, Gether U, and Kobilka BK (2001). Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations. JPharmacol Exp Ther 297, 1218-26.

Sheikh SP, Zvyaga TA, Lichtarge O, Sakmar TP, and Bourne HR (1996). Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383, 347-50.

Strader CD, Fong TM, Tota MR, Underwood D, and Dixon RAF (1994). Structure and function of G protein-coupled receptors. Annu Rev Biochem 63, 101-32.

Teller DC, Okada T, Behnke CA, Palczewski K, and Stenkamp RE (2001). Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 40, 7761-72.

Tota RT and Strader CD (1990). Characterization of the binding domain of the beta-adrenergic receptor with the fluorescent antagonist carazolol. J Biol Chem 265, 16 891-7.

Unger VM, Hargrave PA, Baldwin JM, and Schertler GF (1997). Arrangement of rhodopsin transmembrane alpha-helices. Nature 389, 203-6.

Wall MA, Coleman DE, Lee E etal. (1995). The structure ofthe G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83, 1047-58.

Ward SD, Hamdan FF, Bloodworth LM, and Wess J (2001). Conformational changes that occur during M3 muscarinic acetylcholine receptor activation probed by the use of an in situ disulfide cross-linking strategy. J Biol Chem 6,6.

Wess J (1998). Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol Ther 80, 231-64.

Zhao MM, Hwa J, and Perez DM (1996). Identification of critical extracellular loop residues involved in alpha 1-adrenergic receptor subtype-selective antagonist binding. Mol Pharmacol 50, 1118-26.

0 0

Post a comment