Figure 7.22b is a similar plot for the other two lipids considered: olive oil (unfilled symbols) and octanol (filled symbols). Both lipids can be described by a bilinear relationship, patterned after the case in Fig. 7.19d [Eq. (7.44)]. Octanol shows a declining log Pe relationship for very lipophilic molecules (log Kd > 2). The probe set of 32 molecules does not have examples of very hydrophilic molecules, with log Kd < —2, so the expected hydrophilic ascending part of the solid curve in Fig. 7.22b is not fully shown. Nevertheless, the shape of the plot is very similar to that reported by Camenisch et al. [546], shown in Fig. 7.8c. The UWL in the latter study (stirred solutions) is estimated to be — 460 mm (Fig. 7.8b), whereas the corresponding value in unstirred 96-well microtiter late assay is about 2300 mm. For this reason, the high point in Fig. 7.22b is -16 x 10—6 cm/s, whereas it is -70 x 10—6 cm/s in Fig. 7.8c.

Kansy et al. [550] reported the permeability-lipophilicity relationship for about 120 molecules based on the 10% wt/vol egg lecithin plus 0.5% wt/vol cholesterol in dodecane membrane lipid (model 15.0 in Table 7.3), shown in Fig. 7.23. The vertical axis is proportional to apparent permeability [see Eq. (7.9)]. For log Kd > 1.5, Pa decreases with increasing log Kd. In terms of characteristic permeability-lipophilicity plots of Fig. 7.19, the Kansy result in Fig. 7.23 resembles the bilinear case in Fig. (7.19d). Some of the Pa values may be underestimated for the most lipophilic molecules because membrane retention was not considered in the analysis.

0 0

Post a comment